» » » Дональд Бокс - Сущность технологии СОМ. Библиотека программиста


Авторские права

Дональд Бокс - Сущность технологии СОМ. Библиотека программиста

Здесь можно скачать бесплатно "Дональд Бокс - Сущность технологии СОМ. Библиотека программиста" в формате fb2, epub, txt, doc, pdf. Жанр: Программирование, издательство Питер, год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Дональд Бокс - Сущность технологии СОМ. Библиотека программиста
Рейтинг:
Название:
Сущность технологии СОМ. Библиотека программиста
Издательство:
Питер
Год:
2001
ISBN:
5-318-00058-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Сущность технологии СОМ. Библиотека программиста"

Описание и краткое содержание "Сущность технологии СОМ. Библиотека программиста" читать бесплатно онлайн.



В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.






wcscpy(g_wsz, bstr);


должен быть защищен от возможных нулевых указателей:


wcscpy (g_wsz, bstr ? bstr : OLESTR(""));


Для упрощения использования BSTR в заголовочном файле ustring.h содержится простая встраиваемая функция:


intline OLECHAR *SAFEBSTR(BSTR b)

{

return b ? b : OLESTR("");

}


Разрешение использовать нулевые указатели в качестве BSTR делает тип данных более эффективным с точки зрения использования памяти, хотя и приходится засорять код этими простыми проверками.

Простые типы, показанные на рис. 2.6, могут компоноваться вместе с применением структур языка С. IDL подчиняется правилам С для пространства имен тегов (tag namespace). Это означает, что большинство IDL-определений интерфейсов либо используют операторы определения типа (typedef):


typedef struct tagCOLOR

{

double red;

double green;

double blue;

} COLOR;

HRESULT SetColor([in] const COLOR *pColor);


либо должны использовать ключевое слово struct для квалификации имени тега:


struct COLOR { double red; double green; double blue; };

HRESULT SetColor([in] const struct COLOR *pColor);


Первый вариант предпочтительней. Простые структуры, подобные приведенной выше, можно использовать как из Visual Basic, так и из Java. Однако в то время, когда пишется эта книга, текущая версия Visual Basic может обращаться только к интерфейсам, использующим структуры, но она не может быть использована для реализации интерфейсов, в которых структуры являются параметрами методов.

IDL и СОМ поддерживают также объединения (unions). Для обеспечения однозначной интерпретации объединения IDL требует, чтобы в этом объединении имелся дискриминатор (discriminator), который показывал бы, какой именно член объединения используется в данный момент. Этот дискриминатор должен быть целого типа (integral type) и должен появляться на том же логическом уровне, что и само объединение. Если объединение объявлено вне области действия структуры, то оно считается неинкапсулированным (nonencapsulated):


union NUMBER

{

[case(1)] long i;

[case(2)] float f;

};


Атрибут [case] применен для установления соответствия каждого члена объединения своему дискриминатору. Для того чтобы связать дискриминатор с неинкапсулированным объединением, необходимо применить атрибут [switch_is]:


HRESULT Add([in, switch_is(t)] union NUMBER *pn, [in] short t);


Если объединение заключено вместе со своим дискриминатором в окружающую структуру, то этот составной тип (aggregate type) называется инкапсулированным, или размеченным объединением (discriminated union):


struct UNUMBER

{ short t; [switch_is(t)]

union VALUE

{

[case(1)] long i;

[case(2)] float f;

};

};


СОМ предписывает для использования с Visual Basic одно общее размеченное объединение. Это объединение называется VARIANT[4] и может хранить объекты или ссылки на подмножество базовых типов, поддерживаемых IDL. Каждому из поддерживаемых типов присвоено соответствующее значение дискриминатора:


VT_EMPTY nothing

VT_NULL SQL style Null

VT_I2 short

VT_I4 long

VT_R4 float

VT_R8 double

VT_CY CY (64-bit currency)

VT_DATE DATE (double)

VT_BSTR BSTR

VT_DISPATCH IDispatch *

VT_ERROR HRESULT

VT_BOOL VARIANT_BOOL (True=-1, False=0)

VT_VARIANT VARIANT *

VT_UNKNOWN IUnknown *

VT_DECIMAL 16 byte fixed point

VT_UI1 opaque byte


Следующие два флага можно использовать в сочетании с вышеприведенными тегами, чтобы указать, что данный вариант (variant) содержит ссылку или массив данного типа:

VT_ARRAY Указывает, что вариант содержит массив SAFEARRAY

VT_BYREF Указывает, что вариант является ссылкой

СОМ предлагает несколько API-функций для управления VARIANT:


// initialize a variant to empty

// обнуляем вариант

void VariantInit(VARIANTARG * pvarg);

// release any resources held in a variant

// освобождаем все ресурсы, используемые в варианте

HRESULT VariantClear(VARIANTARG * pvarg);

// deep-copy one variant to another

// полностью копируем один вариант в другой

HRESULT VariantCopy(VARIANTARG * plhs, VARIANTARG * prhs);

// dereference and deep-copy one variant into another

// разыменовываем и полностью копируем один вариант в другой

HRESULT VariantCopyInd(VARIANT * plhs, VARIANTARG * prhs);

// convert a variant to a designated type

// преобразуем вариант к указанному типу

HRESULT VariantChangeType(VARIANTARG * plhs, VARIANTARG * prhs, USHORT wFlags, VARTYPE vtlhs);

// convert a variant to a designated type

// преобразуем вариант к указанному типу (с явным указанием кода локализации)

HRESULT VariantChangeTypeEx(VARIANTARG * plhs, VARIANTARG * prhs, LCID lcid, USHORT wFlags, VARTYPE vtlhs);


Эти функции значительно упрощают управление VARIANT'ами. Чтобы понять, как используются эти API-функции, рассмотрим метод, принимающий VARIANT в качестве [in]-параметра:


HRESULT UseIt([in] VARIANT var);


Следующий фрагмент кода демонстрирует, как передать в этот метод целое число:


VARIANT var;

VariantInit(&var);

// initialize VARIANT

// инициализируем VARIANT

V_VT(&var) = VT_I4;

// set discriminator

// устанавливаем дискриминатор

V_I4(&var) = 100;

// set union

// устанавливаем объединение

HRESULT hr = pItf->UseIt(var);

// use VARIANT

// используем VARIANT

VariantClear(&var);

// free any resources in VARIANT

// освобождаем все ресурсы VARIANT


Отметим, что этот фрагмент кода использует макросы стандартного аксессора (accessor) для доступа к элементам данных VARIANT. Две следующие строки


V_VT(&var) = VT_I4;

V_I4(&var) = 100;


эквивалентны коду, который обращается к самим элементам данных:


var.vt = VT_I4;

var.lVal = 100;


Первый вариант предпочтительнее, так как он может компилироваться на С-трансляторах, которые не поддерживают неименованных объединений.

Ниже приведен пример того, как с помощью приведенной выше технологии реализация метода использует параметр VARIANT в качестве строки:


STDMETHODIMP MyClass::UseIt( /*[in] */ VARIANT var)

{

// declare and init a second VARIANT

// объявляем и инициализируем второй VARIANT

VARIANT var2;

VariantInit(&var2);

// convert var to a BSTR and store it in var2

// преобразуем переменную в BSTR и заносим ее в var2

HRESULT hr = VariantChangeType(&var2, &var, 0, VT_BSTR);

// use the string

// используем строку

if (SUCCEEDED(hr))

{

ustrcpy(m_szSomeDataMember, SAFEBSTR(V_BSTR(&var2)));

// free any resources held by var2

// освобождаем все ресурсы, поддерживаемые var2

VariantClear(&var2);

}

return hr;

}


Отметим, что API-процедура VariantChangeType способна осуществлять сложное преобразование любого переданного клиентом типа из VARIANT в нужный тип (в данном случае BSTR).

Один из последних типов данных, который вызывает дискуссию, – это интерфейс СОМ. Интерфейсы СОМ могут быть переданы в качестве параметров метода одним из двух способов. Если тип интерфейсного указателя известен на этапе проектирования, то тип интерфейса может быть объявлен статически:


HRESULT GetObject([out] IDog **ppDog);


Если же тип на этапе проектирования неизвестен, то разработчик интерфейса может дать пользователю возможность задать тип на этапе выполнения. Для поддержки динамически типизируемых интерфейсов в IDL имеется атрибут [iid_is]:


HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] IUnknown **ppUnk);


Хотя эта форма будет работать вполне хорошо, следующий вариант предпочтительнее из-за его подобия с QueryInterface:


HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] void **ppv);


Атрибут [iid_is] можно использовать как с параметрами [in], так и [out] для типов IUnknown * или void *. Для того чтобы использовать параметр интерфейса с динамически типизируемым типом, необходимо просто установить IID указателя требуемого типа:


IDog *pDog = 0; HRESULT hr = pItf->GetObject(IID_IDog, (void**)&pDog);


Соответствующая реализация для инициализации этого параметра просто использовала бы метод QueryInterface для нужного объекта:


STDMETHODIMP Class::GetObject(REFIID riid, void **ppv)

{

extern IUnknown * g_pUnkTheDog;

return g_pUnkTheDog->QueryInterface(riid, ppv);

}


Для уменьшения количества дополнительных вызовов методов между клиентом и объектом указатели интерфейса с динамически типизируемым типом должны всегда использоваться вместо указателей интерфейса со статически типизируемым типом IUnknown.


Атрибуты и свойства

Иногда бывает полезно показать, что объект имеет некие открытые свойства, которые могут быть доступны и/или которые можно модифицировать через СОМ-интерфейс. СОМ IDL позволяет аннотировать методы интерфейса с тем, чтобы данный метод либо модифицировал, либо читал именованный атрибут объекта. Рассмотрим такое определение интерфейса:


[ object, uuid(0BB3DAE1-11F4-11d1-8C84-0080C73925BA) ]

interface ICollie : IDog

{

// Age is a read-only property

// Age (возраст) – это свойство только для чтения

[propget] HRESULT Age([out, retval] long *pVal);

// HairCount is a read/write property

// HairCount (счетчик волос) – свойство для чтения/записи

[propget] HRESULT HairCount([out, retval] long *pVal);

[propput] HRESULT HairCount([in] long val);

// CurrentThought is a write-only property

// CurrentThought (текущая мысль) – свойство только для записи

[propput] HRESULT CurrentThought([in] BSTR val);

}


Использование атрибутов [propget] и [propput] информирует компилятор IDL, что методы, которые ему соответствуют, должны быть отображены в преобразователи свойств (property mutators) или в аксессоры на языках, явно поддерживающих свойства. Применительно к Visual Basic это означает, что элементами Age, HairCount и CurrentThought можно манипулировать, используя тот же синтаксис, как при обращении к элементам структуры:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Сущность технологии СОМ. Библиотека программиста"

Книги похожие на "Сущность технологии СОМ. Библиотека программиста" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дональд Бокс

Дональд Бокс - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дональд Бокс - Сущность технологии СОМ. Библиотека программиста"

Отзывы читателей о книге "Сущность технологии СОМ. Библиотека программиста", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.