» » » » Рэймонд Смаллиан - Принцесса или тигр


Авторские права

Рэймонд Смаллиан - Принцесса или тигр

Здесь можно скачать бесплатно "Рэймонд Смаллиан - Принцесса или тигр" в формате fb2, epub, txt, doc, pdf. Жанр: Математика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рэймонд Смаллиан - Принцесса или тигр
Рейтинг:
Название:
Принцесса или тигр
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Принцесса или тигр"

Описание и краткое содержание "Принцесса или тигр" читать бесплатно онлайн.



Задачи по логике






Рассмотрим теперь систему, удовлетворяющую условиям G2; и G3 (условие G1 пока несущественно). Ранее мы определили Р как множество гёделевых номеров всех утверждений, доказуемых в данной системе; пусть теперь Т будет множеством гёделевых номеров всех истинных утверждений в этой системе. В 1933 г. логик Альфред Тарский поставил вопрос: «Именуемо ли множество Т в данной системе или нет?» — и ответил на него. Ответ может быть получен на основе лишь условий G2 и G3. Однако, прежде чем говорить об этом, обратимся сначала к вопросу не меньшей важности— о системах, которые удовлетворяют по крайней мере условию G3.

Для любого заданного утверждения X и любого множества положительных целых чисел А мы будем называть X гёделевым утверждением для A, если либо X истинно и его гёделев номер принадлежит A, либо X ложно и его гёделев номер не принадлежит A. (Подобное утверждение можно представлять себе как высказывание о том, что его собственный гёделев номер принадлежит A: если это утверждение истинно, то его гёделев номер действительно принадлежит A; если же оно ложно, то его гёделев номер не принадлежит A.) Далее, мы будем называть систему гёделевой в том случае, если для каждого множества Л, допускающего наименование в этой системе, существует хотя бы одно гёделево утверждение для A.

При этом самым существенным для нас пунктом является следующая теорема.

Теорема С. Если система удовлетворяет условию G3, то эта система является гёделевой.


1. Докажите теорему С.

2. В качестве частного случая рассмотрите систему Фергюссона. Найдите гёделево утверждение для множества А100

3. Предположим, что некоторая система является гёделевой (даже если она и не удовлетворяет условию G3). Если эта система правильна и удовлетворяет условиям G1, и G2, то обязательно ли она содержит утверждение, которое является истинным, но недоказуемым в данной системе?

4. Пусть Т—множество гёделевых номеров всех истинных утверждений. Существует ли гёделево утверждение для Т? Существует ли гёделево утверждение для множества Т, то есть дополнения Т?


Вот теперь мы наконец можем ответить и на вопрос, поставленный Тарским. В самой общей форме теорема Тарского формулируется следующим образом:

Теорема Т. Для любой заданной системы, удовлетворяющей условиям G 2 и G3, множество Т гёделевых номеров истинных утверждений не именуемо в данной системе.

Примечание. Иногда слово «именуемо» заменяется словом определимо», в результате чего теорему Т формулируют так: для достаточно богатой системы истинность в ее рамках не определима в пой системе.


5. Докажите теорему Т.

6. Следует отметить, что, доказав теорему Т, мы сразу и в качестве непосредственного следствия получаем теорему G. Может ли читатель сообразить, как это сделать?

Двойственная форма доказательства Гёделя

Те системы, которые, как доказал Гёдель, являются неполными, обладают также следующим свойством: с каждым утверждением X связано утверждение X', о называется отрицанием X, которое истинно в том только том случае, если утверждение X ложно. Дале, если X' — отрицание некоего утверждения X — доказуемо в данной системе, то само утверждение X называется опровержимым в данной системе. Если предположить, что система правильна, то ни одно ложно, утверждение в этой системе не будет доказуемо и ни одно истинное утверждение не будет в ней опровержимо. Ранее мы убедились, что условия G1, G2 и G3 влекут за собой существование некоего гёделева утверждения, или высказывания, G для множества, также что такое утверждение G является истинным, не. недоказуемым в данной системе (предполагая, конечно, что система правильна). Но поскольку G истинно, оно не может быть опровержимым в этой системе (опять, же в предположении правильности системы). Значит утверждение G в данной системе и не доказуемо, и неопровержимо. (Такое утверждение называется неразрешимым в данной системе.)

В своей монографии «Теория формальных систем»[10] (1960 г.) я рассматривал «двойственную» форму доказательства Гёделя, а именно: что будет, если вместо высказывания, утверждающего свою недоказуемость, построить высказывание, утверждающее свою опровержимость? Более строго эту проблему можно сформулировать так.

Пусть R — множество гёделевых номеров опровержимых утверждений. Предположим, что X — гёделево утверждение для R. Что можно сказать о свойствах утверждения X?

Высказанная здесь идея развивается нами в следующей задаче.

7. Рассмотрим теперь правильную систему, которая удовлетворяет условию G3, а вместо условий G1 G2 потребуем выполнения следующего условия.

Условие G1. Множество R именуемо в данной системе. (Таким образом, мы предполагаем, что система правильна и удовлетворяет условиям G1 и G3.)

а. Показать, что существует такое утверждение, которое нельзя ни доказать, ни опровергнуть в данной системе.

б. Рассмотрим следующий частный случай: пусть нам дано, что а10 — это множество R и что для любого числа n множество А5n представляет собой множество (таких чисел х, для которых число х*х принадлежит Аn (здесь мы имеем частный случай условия G3). Задача теперь состоит в том, чтобы найти утверждение, которое было бы и недоказуемым, и неопровержимым и данной системе, а также определить, является ли это утверждение истинным или ложным.

Примечания.

1. Гёлелев метод получения неразрешимого утверждения сводится к построению гёделева утверждения для множества Р — дополнения R; такое утверждение (его можно рассматривать как высказывание, утверждающее собственную недоказуемость) должно быть истинным, но недоказуемым в данной системе. Двойственный метод сводится к построению гёделева утверждения не для множества Р, а для множества R; такое утверждение (его можно рассматривать как высказывание, утверждающее собственную опровержимость) должно быть ложным, но неопровержимым. (Поскольку оно ложно, оно так же недоказуемо и, следовательно, неразрешимо в данной системе.) Следует отметить, что те системы, которые рассматриваются в оригинальной работе Гёделя, удовлетворяют всем четырем условиям — G1, G2, G3 и G1, так что для построения неразрешимых утверждений можно использовать как тот, как и другой метод.

2. Высказывание, которое утверждает собственную недоказуемость, можно сравнить со словами того обитателя острова рыцарей и плутов, который заявляет, будто он непризнанный рыцарь, точно гак же высказывание, утверждающее свою собственную опровержимость, можно уподобить словам такого обитателя острова, который шявляет, что он отъявленный плут; этот человек и в самом деле мошенник, но неотъявленный. (Предоставляю читателю возможность доказать это самому.)

Решения

1. Предположим, система действительно удовлетворяет условию G3. Пусть S—любое множество, именуемое в данной системе. Тогда, согласно условию G3, множество S* тоже именуемо в этой системе. Значит, существует такое число b, для которого Аb = 8*. Далее, число х принадлежит множеству S* только в том случае, если число х*х принадлежит множеству S.

Поэтому х принадлежит множеству Аb только в том случае, если х*х принадлежит S. В частности, если в качестве х выбрать число b, то это число принадлежит; множеству Ab, только в том случае, если число b* принадлежит множеству S. Кроме того, число b принадлежит Ab в том и только том случае, если утверждение b Є Аb истинно. Поэтому утверждение b Є Аb истинно тогда и только тогда, когда b*b принадлежит множеству S. Но число b*b есть гёделев номер утверждения b Є Ab. Следовательно, мы имеем, что утверждение b Є Ab будет истинным тогда и только тогда, когда гёделев номер этого утверждения принадлежит множеству S. Итак, если утверждение b Є A истинно, то его гёделев номер принадлежит S; если ж это утверждение ложно, то его гёделев номер принадлежит S. Таким образом, утверждение b Є A является гёделевым утверждением для S.

2. В системе Фергюссона при любом заданном числе n множество а3n+i представляет собой множество An*. Поэтому множество A301 — это есть множество A Воспользуемся теперь результатом предыдущей задачи, положив b равным 301. Тогда утверждение 301 Є А301 будет гёделевым утверждением для множества Аb. Вообще для любого числа n, выбрав d = 3n+1, мы получим, что утверждение b Є Ab, является гёделевым для множества Ab в системе Фергюссона.

3. Да. Предположим, что данная система является гёделевой и что условия G1 и G2 выполняются; предположим также, что система правильна. Согласно условию G1, множество R именуемо в этой системе; поэтому, согласно условию G1, именуемо также и множество Р — дополнение R. Тогда, поскольку исходная система гёделева, то существует гёделево утверждение X для Р. Это означает, что X истинно в том и только том случае, если гёделев номер утверждения X принадлежит Р. Однако если гёделев номер утверждения X принадлежит Р, то тем самым он не принадлежит R, а это значит, что утверждение X недоказуемо. Таким образом, гёделево утверждение для R — это ни больше ни меньше как утверждение, которое истинно в том и только том случае, если оно недоказуемо в (данной системе, а такое утверждение (как мы уже видели) как раз и должно быть истинным, но недоказуемым в этой системе (если система правильна).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Принцесса или тигр"

Книги похожие на "Принцесса или тигр" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Рэймонд Смаллиан

Рэймонд Смаллиан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Рэймонд Смаллиан - Принцесса или тигр"

Отзывы читателей о книге "Принцесса или тигр", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.