» » » Виталий Гинзбург - "Физический минимум" на начало XXI века


Авторские права

Виталий Гинзбург - "Физический минимум" на начало XXI века

Здесь можно скачать бесплатно "Виталий Гинзбург - "Физический минимум" на начало XXI века" в формате fb2, epub, txt, doc, pdf. Жанр: Физика. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Виталий Гинзбург -
Рейтинг:
Название:
"Физический минимум" на начало XXI века
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги ""Физический минимум" на начало XXI века"

Описание и краткое содержание ""Физический минимум" на начало XXI века" читать бесплатно онлайн.



Вступление

Список «особенно важных и интересных проблем»

Макрофизика

Микрофизика

Астрофизика

О трех «великих» проблемах






В квантовой механике и в квантовой теории поля элементарные частицы считаются точечными. В теории струн элементарные частицы — это колебания одномерных объектов (струн), имеющих характерные размеры порядка 10–33 см. Струны могут быть конечной длины (некоторый «отрезок») или в виде колечек. Струны рассматриваются не в 4-мерном («обычном») пространстве, а в многомерных пространствах, скажем с 10 или 11 измерениями.

Теоретическая физика еще не может ответить на целый ряд вопросов, например: как построить квантовую теорию гравитации и объединить ее с теорией других взаимодействий; почему существует, по-видимому, только 6 типов (ароматов) кварков и 6 лептонов; почему масса электронного нейтрино очень мала; почему m- и t-лептоны отличаются по своей массе от электрона именно в известное из эксперимента число раз; как определить из теории постоянную тонкой структуры a = 1/137 и ряд других постоянных и т. д. Другими словами, как ни грандиозны и впечатляющи достижения физики, нерешенных фундаментальных проблем предостаточно. Теория струн еще не ответила на подобные вопросы. Все, что в ней происходит, — это, скорее, «физнадежды», как любил говорить Л. Д. Ландау, а не результаты. Но чувствуется, что эта теория — нечто глубокое и развивающееся.

Астрофизика

К астрофизике относим проблемы 21–30, что в некоторых случаях весьма условно. В частности, и даже в особенности, это относится к вопросу об экспериментальной проверке ОТО — общей теории относительности. Эффекты ОТО в пределах Солнечной системы весьма малы. Именно поэтому проверка, с успехом начатая в 1919 году и продолжающая до сих пор, не приводит к точностям, к которым мы привыкли в атомной физике.

Для отклонения радиоволн Солнцем отношение наблюдаемой величины к вычисленной согласно ОТО составляет 0,99997 + 0,00016. Такое же отношение для поворота перигелия Меркурия равно 1,000 + 0,001. В общем ОТО проверена в слабом гравитационном поле с погрешностью до сотой доли процента; при этом никаких отклонений от ОТО не обнаружено. Особо стоит вопрос о проверке принципа эквивалентности; его справедливость подтверждена с точностью 10–12.

В астрофизике отклонение лучей в поле тяжести все шире используется при наблюдении «линзирования», т. е. фокусировки электромагнитных волн под действием гравитационного поля, в применении как к галактикам (они линзируют свет и радиоволны квазаров и других галактик), так и к звездам (микролинзирование более удаленных звезд). Разумеется, речь при этом не идет о проверке ОТО (точность измерений сравнительно невелика), а об ее использовании.

Когда-то наблюдать гравитационные линзы считалось практически невозможным. Однако в 1979 году было обнаружено линзирование одного из квазаров. В настоящее время наблюдение линзирования и микролинзирования — довольно широко используемый астрономический метод. В частности, данные о линзировании позволяют определить постоянную Хаббла.

По-настоящему актуальна проверка ОТО в сильных гравитационных полях — для нейтронных звезд и вблизи черных дыр и вообще для черных дыр. Так, недавно предложен метод проверки ОТО в сильном поле по колебаниям излучения в двойной звезде, одна из компонент которой является нейтронной звездой. Хотя черные дыры и можно было вообразить себе в дорелятивистской физике, но по сути дела — это замечательный релятивистский объект. Можно отметить, что их обнаружение подтверждает ОТО. Однако, насколько я себе представляю ситуацию, нельзя утверждать, что известное о черных дырах подтверждает именно ОТО, а не некоторые отличающиеся от нее релятивистские теории гравитации.

Существенной проверкой ОТО является исследование двойных пульсаров. Оно показало, что потеря энергии двумя движущимися нейтронными звездами, образующими двойную систему, находится в полном согласии с ОТО при учете гравитационного излучения (интенсивность которого была вычислена Эйнштейном в 1918 году). Ни один квалифицированный физик не сомневается в существовании гравитационных волн. Но имеется проблема (она фигурирует в списке под номером 22) — прием гравитационных волн, приходящих из космоса. Задача технически очень сложна, для ее решения строятся гигантские установки. Так, система LIGO (Laser interferometer gravitational-wave observatory, США) состоит из двух далеко разнесенных «антенн» длиной 4 км каждая. В этой установке можно будет заметить происходящее под действием приходящей гравитационной волны смещение зеркал на 10–16 см, а в дальнейшем и меньшие смещения. В ближайшие годы LIGO и аналогичные установки, строящиеся в Европе и Японии, вступят в строй. Так будет положено начало гравитационно-волновой астрономии.

Замечу, что радиоастрономия родилась в 1931 году, а начала интенсивно развиваться после 1945 года. Галактическая рентгеновская астрономия возникла в 1962 году. Гамма-астрономия и нейтринная астрономия еще моложе. С развитием гравитационно-волновой астрономии будет освоен последний известный «канал», по которому мы можем получать астрофизическую информацию. Как и в других случаях, весьма важны будут совместные (одновременные) измерения в различных «каналах». Речь может идти, например, об исследовании образования сверхмассивных черных дыр совместно в нейтринном, гравитационно-волновом и гамма-«каналах».

Совокупность проблем, указанных в списке под номером 23, — это, пожалуй, самое главное в астрофизике. Сюда отнесена и космология. Несомненно, космологическая проблема — великая проблема. Внимание она привлекала к себе всегда: ведь системы Птолемея и Коперника — это тоже космологические теории. В рамках физики XX века космология в теоретическом плане создавалась в работах Эйнштейна (1917 г.), Фридмана (1922 и 1924 гг.), Леметра (1927 г.) и затем многих других. Но до конца 40-х годов все наблюдения, существенные с космологической точки зрения, велись в оптическом диапазоне. Поэтому от крыт был лишь закон красного смещения, и тем самым установлено расширение Метагалактики (работы Хаббла, которые датируются 1929 годом, хотя красное смещение наблюдалось и ранее, и не только Хабблом). Энергичное развитие космологии началось только после того, как в 1965 году было открыто реликтовое тепловое радиоизлучение с температурой около 2,7 К. В настоящее время именно измерения в радиодиапазоне играют наиболее важную роль среди наблюдений, имеющих космологическое значение.

Одной из основных, а может быть и главной, задачей в космологии является определение характера эволюции Вселенной. Важный результат, известный уже довольно давно, заключается в том, что в эволюцию Вселенной вносит вклад не только «обычное» барионное вещество (и, конечно, электроны), но еще что-то, что называют скрытой, или темной, массой (dark matter). Кроме этого, предполагается и влияние некоторой «вакуумной материи», называемой также «темной энергией».

Обращаясь к проблеме 24 (нейтронные звезды и пульсары, сверхновые), замечу, что гипотеза о существовании нейтронных звезд, насколько знаю, была высказана в 1934 году. Вначале казалось, что нейтронные звезды (характерный радиус 10 км, масса порядка массы Солнца) обнаружить почти невозможно. Сейчас даже одиночные нейтронные звезды, не говоря уже о двойных звездах, изучаются в рентгеновских лучах. Однако еще до этого в 1967–1968 годах было открыто радиоизлучение нейтронных звезд — пульсаров.

Сейчас известно около 1000 пульсаров с периодом радиоимпульсов (это также период вращения звезды) от 1,56 x 10 –3 с до 4,3 с. У миллисекундных пульсаров магнитное поле (на поверхности) порядка 10 8– 10 9 Э. У большинства пульсаров с периодом радиоимпульсов от 0,1 с до 1 с поле порядка 10 12 Э. Кстати, существование в природе столь сильных магнитных полей тоже важное открытие. В последнее время обнаружены нейтронные звезды с еще более сильными полями (магнетары), достигающими по оценкам 10 15–10 16 Э(!). Радиоизлучение эти магнетары не испускают, но наблюдаются в мягких гамма-лучах.

Черные дыры и особенно космические струны — еще значительно более экзотические объекты, чем нейтронные звезды. Космические струны (не следует, конечно, их путать с суперструнами) — это некоторые (не единственно возможные) топологические «дефекты», могущие возникать при фазовых переходах в ранней Вселенной. Они представляют собой нити, могущие быть замкнутыми (кольца) космических масштабов и с характерной толщиной порядка 10–29– 10–30 см. Космические струны еще не наблюдались, даже «кандидаты» на эту роль мне неизвестны. Поэтому я было включил космические струны в «список» рядом с черными дырами, но поставил знак вопроса.

Совсем иначе дело обстоит с черными дырами — они являются важнейшими астрономическими и физическими объектами. Несмотря на то что «схватить черную дыру за руку» очень трудно, в их существовании и большой роли в космосе сегодня невозможно сомневаться. Любопытно, что черные дыры в некотором смысле были предсказаны еще в конце XVIII века Митчеллом и Лапласом.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на ""Физический минимум" на начало XXI века"

Книги похожие на ""Физический минимум" на начало XXI века" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Виталий Гинзбург

Виталий Гинзбург - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Виталий Гинзбург - "Физический минимум" на начало XXI века"

Отзывы читателей о книге ""Физический минимум" на начало XXI века", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.