» » » » Карл Поппер - Открытое общество и его враги


Авторские права

Карл Поппер - Открытое общество и его враги

Здесь можно скачать бесплатно "Карл Поппер - Открытое общество и его враги" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Международный фонд «Культурная инициатива». Soros Foundation (USA), год 2009. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Открытое общество и его враги
Автор:
Издательство:
Международный фонд «Культурная инициатива». Soros Foundation (USA)
Жанр:
Год:
2009
ISBN:
5-85042-063-0
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Открытое общество и его враги"

Описание и краткое содержание "Открытое общество и его враги" читать бесплатно онлайн.



Один из известнейших современных философов анализирует роль Платона, Гегеля и Маркса в формировании идейной базы тоталитаризма. Критикуются претензии на знание «объективных законов» истории и радикальное преобразование общества на «научной основе». Подробно рассмотрено развитие со времен античности идей демократического «открытого общества».

Книга, давно ставшая классической, рассчитана на всех интересующихся историей общественной мысли.






m2 - n2 ÷ 2mn ÷ m2 + n2,

где m > n, а "÷" — знак пропорции.

Поскольку эта формула легко выводится из теоремы Пифагора (применяя некоторые алгебраические приемы, которые, по-видимому, уже были известны ранним пифагорейцам) и поскольку она, очевидно, не была известна не только Пифагору, но и Платону (который, согласно Проклу, вывел другую неуниверсальную формулу), то можно сделать вывод о том, что «теорему Пифагора» в общем виде не знал ни Пифагор, ни даже Платон. (Менее радикальный взгляд на эту проблему изложен в книге Т. Хита: Т. Heath. A History of Greek Mathemathscs, 1921, vol. 1, p. 80-82. Формула, которую я назвал «универсальной», принадлежит Евклиду. Ее можно получить из излишне усложненной формулы, которую Хит приводит на с. 82 своей книги, сначала получив значение длины трех сторон треугольника и умножив полученные результаты на 2/m, а затем произведя замену m на n и p на d.)

Открытие иррациональности значения квадратного корня из двух (об этом открытии Платон упоминает в «Гиппии Большем» и в «Меноне» — см. прим. 10 к гл. 8, а также Аристотель. «Первая Аналитика», 41а 26 и след.) доказало невозможность осуществления пифагорейской программы «арифметизации» геометрии, а вместе с тем, по-видимому, и нежизнеспособность самого пифагорейского Порядка. Сведения о том, что это открытие сначала не подлежало разглашению, подтверждаются тем фактом, что Платон первоначально все еще называл иррациональное термином «αρρητοσ», т.е. секрет, сокровенная тайна — см. «Гиппий Больший», 303 b/с, «Государство», 546 с. (Позднее он стал употреблять термин «несоизмеримость» — см. «Теэтет», 147 с, и «Законы», 820 с. Термин «αλογοσ» впервые появился, по-видимому, у Демокрита, написавшего сочинение из двух книг под названием «Об иррациональных линиях и атомах» или «О несозмеримых линиях и телах», которое было утеряно. Платону был известен термин «αλογοσ», о чем свидетельствует презрительное упоминание названия труда Демокрита в «Государстве», 534 d, но он никогда не использовал его в качестве синонима термину «αρρητοσ». Первое несомненное использование термина «αλογοσ» в этом смысле мы находим у Аристотеля во «Второй Аналитике», 76b 9. См. также книгу Т. Heath, op. cit., vol. I, p. 84 и след., р. 156 и след. и мое «Дополнение I» в конце тома 1.)

Крушение пифагорейской программы арифметизации геометрии привело, по-видимому, к разработке аксиоматического метода Евклида, предназначенного, с одной стороны, спасти от краха то, что еще можно было спасти в математике (в том числе и метод рациональных доказательств), и с другой стороны, ассимилировать факт несводимости геометрии к арифметике. Поэтому весьма вероятно, что Платон сыграл чрезвычайно важную роль в переходе от древнего пифагорейского метода к методу Евклида — фактически, он был одним из первых создателей специфически геометрической методологии, цель которой состояла в покрытии издержек краха пифагореизма. Все это, конечно, следует рассматривать лишь как смелую историческую гипотезу, хотя некоторые аргументы в ее пользу можно найти у Аристотеля во «Второй Аналитике», 76b 9 (об этом фрагменте я уже упоминал ранее), особенно если сравнить этот отрывок с тем, что сказано в «Законах», 818 с, 895 е (о четном и нечетном), 819 е/820 а и 820 с (о несоизмеримости). Аристотель пишет: «Арифметика [исследует], что такое нечетное и четное… геометрия — что такое несоизмеримое» (см. также «Первую Аналитику», 41а 26 и след., 50а 37, и «Метафизику», 983а 20, 1061b 1-3, где проблема несоизмеримости трактуется как принадлежащая к геометрии, и 1089а, где, как и во «Второй Аналитике», 76b 40, есть намек на «Теэтет», 147 d, в котором говорится о свойствах квадрата со стороной в одну стопу.) То, что Платона глубоко интересовала проблема иррациональности, хорошо показывают два упомянутых ранее отрывка: «Теэтет», 147 с-148 а, и «Законы», 819 d-822 d, где он говорит о том, что ему жаль тех греков, которые не дожили до открытия великой проблемы несоизмеримости величин.

Теперь я хотел бы высказать гипотезу о том, что платоновская «теория первичных тел» (см. «Тимей» 53 с-62 с, возможно, даже вплоть до 64 а, а также «Государство», 528 b-d) была одним из средств решения этой проблемы. Эта теория, сохраняя, с одной стороны, пифагорейский атомизм, т.е. учение о неделимых единицах («монадах»), которые фигурировали также и в более поздних атомистических учениях, с другой стороны, ассимилирует иррациональные величины (квадратные корни из двух и трех), так как закрыть глаза на их присутствие в мире было уже невозможно. В этой теории говорится о двух труднопостижимых треугольниках: один из них образуется двумя сторонами и диагональю квадрата и имеет гипотенузу, кратную квадратному корню из двух, а другой получается путем проведения из вершины равностороннего треугольника высоты, длина которой кратна квадратному корню их трех. Учение о том, что эти два иррациональных треугольника являются пределами («περασ» — см. «Менон», 75 d-76 а) или формами всех элементарных физических тел может быть названо одной из центральных физических доктрин «Тимея».

Все это наводит на мысль, что предупреждение, обращенное Платоном ко всем, кто несведущ в геометрии (упоминание об этом можно найти в «Тимее», 54 а), могло иметь достаточно определенную направленность, о которой мы говорили ранее, и что оно могло быть связано с верой в то, что геометрия важнее арифметики (см. «Тимей», 31 с). Это, в свою очередь, могло бы объяснить нам, отчего «равенство отношений» (пропорцию), которое Платон считал более аристократичным, чем демократическое арифметическое или численное равенство, он позднее отождествил с «геометрическим равенством», упоминаемом в «Горгии», 508 а (см. прим. 48 к настоящей главе), а также почему многие (например, Плутарх, loc. cit.) отождествляли арифметику с демократией, а геометрию со спартанской аристократией, вопреки тому почти забытому ныне факту, что пифагорейцы были не менее аристократично настроены, чем сам Платон, и что в их программе главное внимание уделялось арифметике, а термин «геометрическое» на их языке означал некоторый род числовых (т.е. арифметических) отношений.

(3) Для объяснения строения первичных тел в «Тимее» Платон обращается к понятиям элементарного квадрата и элементарного равностороннего треугольника. Эти две фигуры, в свою очередь, составлены из двух различных видов субэлементарных треугольников: полуквадрата, длина одной из сторон которого кратна √2, и половины равностороннего треугольника, длина одной из сторон которого кратна √3. Вопрос, почему Платон избрал именно эти два треугольника, а не квадрат и равносторонний треугольник, широко обсуждался. Исследователей интересовал также вопрос (см. п. (4) далее), почему он строил элементарные квадраты из четырех, а не из двух полуквадратов, а элементарный равносторонний треугольник — из шести, а не из двух субэлементарных треугольников. (См. рис. 1 и 2).

Рис. 1. Платоновский элементарный квадрат, составленный из четырех субэлементарных равнобедренных прямоугольных треугольников

Рис. 2. Платоновский элементарный равносторонний треугольник, составленный из шести субэлементарных неравнобедренных треугольников

Как мне кажется, большинство исследователей не сумели понять того, что Платон, горячо интересуясь проблемой иррациональности, не стал бы вводить две иррациональные величины √2 и √3 (о которых он отчетливо говорит в отрывке «Тимей», 54 b) в свои субэлементарные треугольники, если бы он не стремился использовать именно эти иррациональные величины в качестве неделимых далее элементов его мира (Ф. Корнфорд — см. F. M. Cornford. Plato's cosmology, pp. 214, 231 и след. — долго обсуждает оба эти вопроса, однако предлагаемое им общее решение — «гипотеза», как он называет его (р. 234) — кажется мне неприемлемым. Если бы Платон действительно хотел получить некоторую «градацию» вроде той, о которой говорит Корнфорд — хотя у Платона нигде не упоминается о существовании чего-то меньшего, чем то, что Корнфорд называет «уровнем В», — то ему было бы достаточно разделить пополам стороны элементарных квадратов и равносторонних треугольников, построив элементы «уровня В» Корнфорда из четырех элементарных фигур, не содержащих иррациональных величин.) Однако, если Платон хотел привнести эти иррациональные величины в мир в качестве сторон субэлементарных треугольников, из которых состоят все вещи, то он, должно быть, полагал, что способен тем самым решить проблему «природы (соизмеримости и) несоизмеримости» («Законы», 820 с). Несомненно, что эту проблему было почти невозможно решить на основе той или иной разновидности атомистической космологии, поскольку иррациональные величины не могут быть выражены множеством каких-либо единиц, предназначенных для счета рациональных чисел. Однако, если сами единицы измерения будут выражены отрезками, находящимися в «иррациональных отношениях», то этого величайшего парадокса можно будет избежать: ведь такими единицами смогут быть измерены как рациональные, так и иррациональные величины, а потому существование иррациональных величин больше не будет казаться непостижимым или «иррациональным».


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Открытое общество и его враги"

Книги похожие на "Открытое общество и его враги" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Карл Поппер

Карл Поппер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Карл Поппер - Открытое общество и его враги"

Отзывы читателей о книге "Открытое общество и его враги", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.