БСЭ БСЭ - Большая Советская Энциклопедия (АТ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (АТ)"
Описание и краткое содержание "Большая Советская Энциклопедия (АТ)" читать бесплатно онлайн.
В простейшем случае А. водорода один электрон с зарядом —е движется вокруг неподвижного центра с зарядом +е. В этом случае, согласно классической механике, кинетическая энергия
Т =1/2mv =p2/2m (1)
где m — масса, v — скорость, p = mv — количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии притяжения электрона ядром)
U = U(r) = —e2/r (2)
и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой (рис. 1, а), неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U (r) на бесконечности принято за нуль. При отрицательных значениях полной энергии Е = Т + U < 0 движение электрона является связанным: оно ограничено в пространстве значениями r = rmax, при которых Т = 0, Е = U(rmax). При положительных значениях полной энергии E = T + U > 0 движение электрона является свободным — он может уйти на бесконечность с энергией Е = Т = 1/2 mv2, что соответствует ионизованному А. водорода Н+. Нейтральный А. водорода Н представляет, т. о., систему, состоящую из ядра и электрона в связанном состоянии с энергией E < 0.
Полная внутренняя энергия А. Е является его основной характеристикой как квантовой системы — системы, подчиняющейся квантовым законам (см. Квантовая механика). Как показывает огромный экспериментальный материал (см., например, Франка—Герца опыт), А. может длительно находиться лишь в состояниях с определённой энергией — стационарных (неизменных во времени) состояниях.
Существование стационарных состояний — один из основных законов физики микроскопических явлений — квантовой физики. Внутренняя энергия квантовой системы, состоящей из связанных микрочастиц (такой системой и является А.), может принимать одно из дискретного (прерывного) ряда значений
E1, E2, E3, ...(E1 < E2 < E3 < ...). (3)
Каждому из этих «дозволенных» значений энергии соответствует одно или несколько стационарных квантовых состояний движения. Промежуточными значениями энергии (например, лежащими между E1 и E2, E2 и E3 и т.д.) система обладать не может, о такой системе говорят, что её энергия квантована, а нахождение возможных значений энергии называется квантованием энергии. Любое изменение энергии Е связано с квантовым (скачкообразным) переходом системы из одного стационарного квантового состояния в другое (см. ниже).
Графически возможные дискретные значения энергии (3) А. можно изобразить, по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте Ei (i = 1, 2, 3, ...); такая схема приведена на рис. 1, б для А. водорода (на рис. 1, а при E < 0 оказываются, т. о., возможными лишь определённые ступеньки, соединённые горизонтальным пунктиром с уровнями схемы на рис. 1, б). Самый нижний уровень Ei, соответствующий наименьшей возможной энергии системы, называется основным, а все остальные (Ei > Ei, г = 2, 3, 4, ...) — возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные возбуждённые состояния из стационарного основного состояния) необходимо возбудить систему — сообщить ей извне энергию Ei—E1.
Квантование энергии А. является следствием волновых свойств электронов. Нельзя считать, что электрон в А. движется как материальная точка по определённой траектории, согласно законам классической механики. Эти законы справедливы лишь для частиц большой массы (макрочастиц), а для электрона, как микрочастицы, необходимо учитывать, наряду с его корпускулярными свойствами (свойствами частицы), и его волновые свойства. Согласно квантовой механике, движению микрочастицы массы m со скоростью v соответствует длина волны l = h/mv, где h — Планка постоянная. Для электрона в А. l ~ 10—8 см, т. е. порядка линейных размеров А., и учёт волновых свойств электрона в А. является необходимым. Связанное движение электрона в А. схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный колебательный процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны l (и, следовательно, частоты колебаний v). Так как, согласно квантовой механике, v = E/h, отсюда следует, что система, состоящая, подобно А., из связанных микрочастиц, может иметь лишь определённые значения энергии, т. е. энергия квантуется и получается дискретная последовательность уровней энергии — дискретный энергетический спектр. Для А. водорода такая дискретная последовательность получается при Е < 0 (см. рис. 1). Свободное, т. е. не ограниченное в пространстве, поступательное движение микрочастицы, например движение электрона, оторванного от А. (в случае А. водорода — электрона с энергией Е > 0), сходно с распространением бегущей волны в неограниченном объёме, для которой возможны любые значения l (и v). Энергия такой свободной микрочастицы может принимать любые значения, т. е. не квантуется, и получается непрерывная последовательность уровней энергии — непрерывный энергетический спектр. Для А. водорода такая непрерывная последовательность, соответствующая ионизованному А., получается при E > 0. Значение Е ¥ = 0 соответствует границе ионизации, а разность Е ¥ — Е1 = Еион представляет энергию ионизации: для А. водорода она равна 13,6 эв.
Распределение электронной плотности. Состояние электрона в А. можно характеризовать распределением в пространстве его электрического заряда с некоторой плотностью — распределением электронной плотности. При этом электроны рассматриваются наглядным образом, как «размазанные» в пространстве и образующие «электронное облако». Такая модель правильнее характеризует электроны в А., чем модель точечного электрона, движущегося, согласно теории Бора (см. Атомная физика), по строго определённым орбитам. Вместе с тем боровским орбитам можно сопоставить определённые распределения электронной плотности. Для основного уровня энергии Е1 электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии E2, E3, E4,... она распределяется на всё больших средних расстояниях от ядра (что соответствует возрастанию размера орбит в теории Бора). В сложном А. эти электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов в более внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами, которые и определяют размеры А. в целом. При ионизации А. теряет внешние электроны; размеры положительных ионов тем меньше размеров нейтрального А., чем выше кратность иона. Наоборот, размеры отрицательных ионов больше размеров нейтрального А.
Учёт спина электрона и спина ядра. В теории А. весьма существен учёт спина электрона — его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан его магнитный момент. Поэтому в А. необходимо учитывать, наряду с электростатическими взаимодействиями (см. выше), и магнитные взаимодействия, определяемые спиновым магнитным моментом, а также орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенное влияние спина проявляется в сложных А.: от спина электронов зависит заполнение электронных оболочек А. определённым числом электронов (см. ниже).
Ядро в А. также может обладать собственным механическим моментом — ядерным спином, с которым связан небольшой ядерный магнитный момент (в сотни и тысячи раз меньший электронного магнитного момента), а в некоторых случаях и т. н. квадрупольный электрический момент (см. Моменты атомных ядер). Это приводит к дополнительным очень малым взаимодействиям ядра и электронов, обусловливающим дополнительное расщепление уровней энергии А. — т. н. сверхтонкую структуру (малую по сравнению с тонкой структурой).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (АТ)"
Книги похожие на "Большая Советская Энциклопедия (АТ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (АТ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (АТ)", комментарии и мнения людей о произведении.