» » » » БСЭ БСЭ - Большая Советская Энциклопедия (БО)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (БО)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (БО)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (БО)
Рейтинг:
Название:
Большая Советская Энциклопедия (БО)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (БО)"

Описание и краткое содержание "Большая Советская Энциклопедия (БО)" читать бесплатно онлайн.








Больцман Людвиг

Бо'льцман (Boltzmann) Людвиг (20.2.1844, Вена, — 5.9.1906, Дуино, близ Триеста), австрийский физик, один из основоположников статистической физики и физической кинетики. Член Венской АН (1895) и многих академий мира. В 1866 Б. окончил Венский университет. В 1867 приват-доцент этого университета. Профессор теоретической физики университета в Граце (1869—73), профессор математики в Венском университете (1873—1876), профессор экспериментальной физики университета в Граце (1876—89). В 1889—94 занимал кафедру теоретической физики в Мюнхене, в 1894—1900 в Вене, в 1900—02 в Лейпциге, а затем снова в Вене.

  Научные интересы Б. охватывали почти все области физики (и ряд областей математики). Автор работ по математике, механике, гидродинамике, теории упругости, теории электромагнитного поля, оптике, термодинамике и кинетической теории газов. Однако наибольшее значение имеют работы Б. по кинетической теории газов и статистическому обоснованию термодинамики. Б. обобщил (1868—71) полученный Дж. К. Максвеллом закон распределения скоростей газовых молекул на газы, находящиеся во внешнем силовом поле, и установил формулу «больцмановского распределения» (см. Больцмана статистика ), которая проникла во все отделы статистической физики. Применяя статистические методы к кинетической теории идеальных газов, Б. вывел основное кинетическое уравнение газов, являющееся основой физической кинетики (см. Кинетика физическая ). Важнейшая заслуга Б. — исследование необратимых процессов и статистическая трактовка второго начала термодинамики. В 1872 Б. ввёл т. н. Н -функцию, характеризующую состояние замкнутой макроскопической системы, и доказал, что с течением времени Н -функция не может возрастать (Н -теорема). Отождествив Н -функцию с энтропией S (с обратным знаком), Б. связал энтропию с W — вероятностью термодинамической : S = k lnW. Это соотношение, выгравированное на памятнике Б. в Вене, даёт статистическое обоснование второму началу термодинамики и является основой статистической физики . Универсальная постоянная k названа в его честь Больцмана постоянной .

  Б. был ревностным последователем электромагнитной теории Максвелла. Ему принадлежат первые экспериментальные работы по проверке справедливости выводов максвелловской теории электромагнитного поля. Он провёл измерения диэлектрической проницаемости газов и твёрдых тел и установил её связь с оптическим показателем преломления. Свои взгляды на теорию Максвелла Б. изложил в «Лекциях о максвелловской теории электричества и света» (1891—93). В 1884 Б. теоретически вывел закон излучения абсолютно чёрного тела, ранее установленный Й. Стефаном экспериментально, — Стефана — Больцмана закон излучения . Эта работа сыграла большую роль в развитии современной теории излучения. Б. принадлежат также работы по изучению поляризации диэлектриков, теории термоэлектричества, диамагнетизма и др. В частности, Б. разработал теорию Холла эффекта .

  Б. был убеждённым сторонником молекулярной теории. Он резко выступал против очень популярных в Австрии и Германии в конце 19 — начале 20 вв. махизма и энергетизма, сторонники которого (Э. Мах, В. Оствальд и др.) отказывались от объяснения внутреннего механизма физических явлений и признавали лишь «чистое описание». Б. приходилось вести напряжённую идейную борьбу, чтобы отстоять право молекулярно-атомистической теории на существование; его труды не были приняты рядом его соотечественников. Возможно, это сыграло известную роль в трагическом конце Б.: больной и подавленный, он покончил жизнь самоубийством.

  Соч.: Wissenschaftliche Abhandlungen, Bd 1—3, Lpz., 1909; Populäre Schriften, 2. Aufl., Lpz., 1919; в рус. пер. — Очерки методологии физики, М., 1929; Лекции по теории газов, М., 1956.

  Лит.: Фламм Л., Памяти Людвига Больцмана, «Успехи физических наук», 1957, т. 61, в. 1.

  О. В. Кузнецова.

Л. Больцман.

Больцмана постоянная

Бо'льцмана постоя'нная, одна из основных физических постоянных , равная отношению универсальной газовой постоянной R к числу Авогадро NA . (числу молекул в 1 моль или 1 кмоль вещества): k = R/NA . Названа по имени Л. Больцмана . Б. п. входит в ряд важнейших соотношений физики: в уравнение состояния идеального газа, в выражение для средней энергии теплового движения частиц (и собственно теплоёмкости ), связывает энтропию физической системы с её термодинамической вероятностью (см. Вероятность термодинамическая ).

  Б. п. k = (1,38054±0,00018)´10-23 дж /К; это значение соответствует наиболее точным на 1964 данным о постоянных R и nA. Непосредственно значение Б. п. можно определить, например, опытной проверкой законов излучения.

Больцмана принцип

Бо'льцмана при'нцип устанавливает связь между энтропией S физической системы и термодинамической вероятностью W её состояния: S = k lnW, где k — Больцмана постоянная . Предложен Л. Больцманом в 1872. Подробнее см. Энтропия .

Больцмана распределение

Бо'льцмана распределе'ние, см. Больцмана статистика .

Больцмана статистика

Бо'льцмана стати'стика, физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю. Реально к таким системам относятся разрежённые газы, молекулы которых слабо взаимодействуют друг с другом.

  При большом числе частиц в системе невозможно детально описать поведение каждой частицы. Однако общие черты поведения системы в целом являются усреднённым отражением движения отдельных частиц. Частицы распределяются по возможным для них состояниям — их координаты r и импульсы р принимают определённые значения. Математически это описывается функцией распределения, характеризующей вероятность пребывания частицы в данном состоянии.

  Для идеального газа молекул, находящихся в поле внешних сил, функция распределения Больцмана имеет вид:

где р 2 /2m — кинетическая энергия молекулы массы m, U (r ) её потенциальная энергия во внешнем поле, k — Больцмана постоянная , Т — абсолютная температура газа; постоянная А определяется из условия, что суммарное число частиц, распределённых по всем возможным состояниям, равно полному числу частиц в системе (условие нормировки). Так как величина kT характеризует среднюю энергию теплового движения молекулы, то в Б. с. распределение частиц по состояниям определяется отношением полной энергии частицы (кинетическая плюс потенциальная) к энергии её теплового движения.

  Функция распределения (1) содержит два сомножителя: ехр (-р 2 / 2mкТ ) и exp (-U (r )/kT ). Первый из них определяет распределение молекул по импульсам (или скоростям), т. е. является Максвелла распределением , а второй — распределение по координатам в поле внешних сил. Поэтому иногда только вторую зависимость называют распределением Больцмана, а формулу (1) называют распределением Максвелла — Больцмана.

  С помощью функции распределения Больцмана легко получить формулу изменения концентрации молекул воздуха (независимо от их импульса) с изменением высоты над земной поверхностью, а следовательно, и барометрическую формулу , определяющую зависимость давления воздуха от высоты.

  В квантовой статистике вместо функции распределения рассматривается среднее число частиц , находящихся в данном квантовом состоянии с энергией E i , и распределение Больцмана выглядит следующим образом:

  Постоянная А находится из условия

где N — общее число частиц в системе, и равна А = (N/V )(h2 /mkT )3/2 (V — объём газа, h — Планка постоянная ). Распределение (2) является предельным случаем квантовых статистик Бозе — Эйнштейна и Ферми — Дирака, когда можно пренебречь квантовомеханическими эффектами, связанными с взаимным влиянием тождественных частиц (см. Тождественности принцип ). Оно справедливо для систем, у которых все числа  малы по сравнению с 1; это означает, что частицы проводят почти всё время в сильно различающихся состояниях и потому специфическое влияние их друг на друга не проявляется.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (БО)"

Книги похожие на "Большая Советская Энциклопедия (БО)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (БО)"

Отзывы читателей о книге "Большая Советская Энциклопедия (БО)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.