БСЭ БСЭ - Большая Советская Энциклопедия (ВО)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ВО)"
Описание и краткое содержание "Большая Советская Энциклопедия (ВО)" читать бесплатно онлайн.
Категории В. и д. в марксизме, обобщившем достижения и сохранившем преемственную связь с предложенными Аристотелем, Гоббсом, Кантом и Гегелем схемами, органично связаны с производительной деятельностью и специфически социальными характеристиками общественного бытия. В. и д. рассматриваются в марксизме прежде всего как свойства бытия. Эта тенденция в анализе В. и д. продолжает и обобщает линию, представленную Аристотелем и Гегелем (с учётом различий в других пунктах этих концепций). Основная линия марксистского анализа В. и д. состоит в том, чтобы рассмотреть их как моменты познания действительности с целью её изменения и раскрыть связь структур бытия и категорий мышления.
М. К. Петров.
Интерпретируя В. и д. как соотносительные понятия, выражающие основные моменты движения и развития бытия , диалектический материализм рассматривает возможность как менее богатое и конкретное понятие, чем действительность в широком смысле, т. е. объективный мир в целом с присущим ему различием, в том числе противоборствующими тенденциями. Марксизм указал на 2 взаимосвязанных момента: на внутреннее беспокойство, самодвижение, присущее бытию, которое по мере развития реализует свои собственные возможности, и на роль человеческой деятельности, общественной практики, которая имеет дело с определённым спектром возможностей (в том числе и создаваемых в самой человеческой истории) и превращает их в действительность. Действительность в узком смысле и есть реализация существующих потенций бытия и практики как его социальной формы. В этом смысле человеческая история — это история раскрытия объективных возможностей бытия, их реализация, создание новых объективных социально-культурных возможностей и их воплощение в практике.
В зависимости от характера закономерностей, лежащих в основе того или иного типа возможностей, различают абстрактную и реальную возможности. Абстрактная возможность противостоит невозможности и вместе с тем не может непосредственно превратиться в действительность. Реальная возможность предполагает наличие объективных условий для её реализации. Различие между этими двумя типами возможности относительно, так как оба они основаны на объективных, хотя и разного порядка, закономерностях. При изменении условий абстрактная возможность может перерасти в реальную. Классический пример такого превращения дан К. Марксом при анализе генезиса кризисов: в условиях капитализма абстрактная возможность кризиса, возникающая из разделения процесса обмена на два акта — купли и продажи, становится реальной возможностью, которая превращается в действительность. Степень возможности того или иного явления выражается через категорию вероятности .
В существовании и развитии любого объекта воплощено единство противоположных тенденций и потому содержатся возможности разного уровня, направления и значения. Конкретная совокупность реальных условий определяет, какая из возможностей становится господствующей и превращается в действительность; остальные же либо превращаются в абстрактную возможность, либо вообще исчезают. Различают объективные и субъективные условия превращения возможности в действительность. Последние специфичны для общества: здесь ни одна возможность не превращается в действительность, помимо деятельности людей. Вместе с тем субъективный момент деятельности открывает возможности для её волюнтаристского истолкования и соответствующих попыток реализации. Однако произвол в истории раньше или позже терпит крах именно в силу того, что он игнорирует реальные законы действительности, её реальные возможности. Марксизм подчёркивает решающую роль активности человека, его творческих усилий в реализации возможностей, в превращении осознанных тенденций общественного развития в действительность.
Лит.: Маркс К., Тезисы о Фейербахе, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 3; его же, Капитал, т. 1, там же, т. 23; Энгельс Ф., Диалектика природы, там же, т. 20; Ленин В. И., Крах II Интернационала, Полн. собр. соч.,5 изд., т. 26, с. 212— 219; его же, Философские тетради, там же, т. 29, с. 140—42, 321—22, 329—30; Гегель Г. В. Ф., Энциклопедия философских наук, Соч., т. 1, М. — Л., 1929; Проблема возможности и действительности, М.—Л., 1964; Арутюнов В. Х., О категориях возможности и действительности и их значении для современного естествознания, К., 1967.
Л. Е. Серебряков.
Возможные перемещения
Возмо'жные перемеще'ния, виртуальные перемещения, элементарные (бесконечно малые) перемещения, которые точки механической системы могут совершать из занимаемого ими в данный момент времени положения, не нарушая наложенных на систему связей (см. Связи механические ). В. п. — понятия чисто геометрические, не зависящие от действующих сил; они определяются только видом наложенных на систему связей и вводятся как характеристики этих связей, показывающие, какие перемещения при наложенных связях остаются для системы возможными. Например, если связью для точки является какая-нибудь поверхность и точка находится на ней в данный момент в положении М (см. рис. ), то В. п. точки в этот момент будут элементарные отрезки (векторы) длиной ds , направленные по касательной к поверхности в точке М. Перемещение по любому другому направлению не будет В. п., так как при этом нарушится связь (точка не останется на поверхности). Понятие В. п. относится и к покоящейся и к движущейся точке. Если связь со временем не изменяется, то истинное элементарное перемещение ds движущейся точки из положения М совпадает с одним из В. п.
Понятием В. п. пользуются для определения условий равновесия и уравнений движения механической системы (см. Возможных перемещений принцип , Д’Аламбера — Лагранжа принцип ), а также при нахождении степеней свободы числа системы.
С. М. Тарг.
Рисунок к ст. Возможные перемещения.
Возможных перемещений принцип
Возмо'жных перемеще'ний при'нцип, один из вариационных принципов механики , устанавливающий общее условие равновесия механической системы. Согласно В. п. п., для равновесия механической системы с идеальными связями (см. Связи механические ) необходимо и достаточно, чтобы сумма работ dAi , всех приложенных к системе активных сил на любом возможном перемещении системы была равна нулю. Математически В. п. п. выражается уравнением
где Fi — действующие активные силы, dsi — величины возможных перемещений точек приложения этих сил, αi — углы между направлениями сил и возможных перемещений. Для систем с несколькими степенями свободы уравнение (1) должно составляться для каждого независимого перемещения в отдельности.
Таким образом, В. п. п. позволяет найти условия равновесия системы, не вводя неизвестных реакций связей, что существенно упрощает решение и расширяет класс разрешимых задач. Например, с помощью В. п. п. легко найти условия равновесия подъёмного механизма, детали которого скрыты в коробке К (см. рис .). Из уравнения (1) получаем
где Р и Q — действующие силы. Для окончательного расчёта надо установить зависимость между перемещениями dsB и dsD . Если при одном повороте рукоятки АВ винт поднимается на величину h, то эта зависимость найдётся из пропорции dsB : dsD = 2pa : h , где а — длина рукоятки. Окончательно уравнение (2) даёт следующее условие равновесия Р = Qh/ 2pa . Методами геометрической статики (если скрытые в коробке детали механизма неизвестны) эта задача вообще решена быть не может.
О применении аналогичного метода к решению задач динамики см. Д'Аламбера — Лагранжа принцип .
С. М. Тарг.
Рисунок к ст. Возможных перемещений принцип.
Возмущающее воздействие
Возмуща'ющее возде'йствие, помехи и сигналы, нарушающие функциональную связь между задающим воздействием и регулируемой величиной в системах автоматического управления.
Возмущения магнитные
Возмуще'ния магни'тные , см. Вариации магнитные .
Возмущения небесных тел
Возмуще'ния небе'сных тел, отклонения реальных траекторий небесных тел от траекторий, по которым они двигались бы в случае взаимодействия с одним единственным телом (см. Двух тел задача ). Траектории движения в задаче двух тел представляют собой так называемые конические сечения — эллипс, параболу, гиперболу. Движение по коническому сечению можно рассматривать как первое приближение при условии, что одна из притягивающих масс значительно превосходит по своей величине все остальные. Так, например, в Солнечной системе движение планет вокруг Солнца можно рассматривать, в первом приближении, как движение по эллиптическим орбитам. Взаимные возмущения планет в этом случае малы и могут быть вычислены путём разложений в ряды по степеням малых параметров (аналитические методы) или численным интегрированием уравнений движения (численные методы). За малые параметры принимают обычно массы планет, выраженные в единицах массы Солнца, а также эксцентриситеты и наклоны их орбит. Члены ряда называются возмущениями пли неравенствами в движении небесных тел и имеют вид: Atm , где m = 1, 2,..., и A sin (at + b). Члены первого вида называются вековыми возмущениями, второго вида — периодическими. Коэффициенты А содержат множителем массы планет в различных положительных степенях и потому являются малыми величинами. Возмущения, содержащие массы планет в первой степени, называются возмущениями первого порядка, во второй степени второго порядка и т.д. При построении теории движения больших планет приходится учитывать возмущения второго порядка и некоторые возмущения третьего порядка. Среди периодических возмущений особого внимания требуют те, у которых коэффициент a в аргументе тригонометрической функции очень мал. Так как период возмущения равен 360°/a, то при малом a период соответствующего возмущения очень велик по сравнению с периодом обращения самой планеты вокруг Солнца; такие возмущения называются долгопериодическими.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ВО)"
Книги похожие на "Большая Советская Энциклопедия (ВО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ВО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ВО)", комментарии и мнения людей о произведении.




























