БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ГЕ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ГЕ)" читать бесплатно онлайн.
В Г. а. разработан ряд способов астрономических наблюдений, различающихся в зависимости от того, какие величины определяются (время, широта, долгота или азимут), какие светила для этого наблюдаются (звёзды или Солнце) и как и какие величины непосредственно измеряются при наблюдениях небесного светила (зенитное расстояние z, высота h, азимут а* и момент Т прохождения светила через избранную плоскость). Выбор этих способов зависит от поставленной задачи, точности её решения, наличия инструментов и т. д. При этом небесные координаты наблюдаемого светила, а именно его прямое восхождение а и склонение a, считаются известными; они приводятся в астрономических ежегодниках и каталогах звёзд.
Соединив на небесной сфере (рис.) полюс PN, зенит места Z и наблюдаемое светило а дугами больших кругов, получим т. н. параллактический треугольник PNZs, в котором угол при вершине Z есть дополнение азимута а* светила до 180° и угол при вершине PN равен часовому углу t светила.
Все способы астрономических определений основаны на решении параллактического треугольника после измерения его некоторых элементов (см. Сферическая астрономия). Так, измерив зенитное расстояние Z светила в момент Т по хронометру и зная широту j места, можно определить часовой угол t светила из выражения
cosz = sinj sin d + cosj cosd cost
и по равенству t = s — a= Т + u — a найти поправку u к показанию хронометра и местное звёздное время s. Зная поправку хронометра u и измерив зенитное расстояние Z светила, можно определить широту j места. Поправку хронометра выгодно определять из наблюдений звёзд в первом вертикале, а широту места — в меридиане, т. е. в кульминации небесного светила. Если измерить зенитные расстояния двух звёзд, расположенных в меридиане к Ю. или С. от зенита места, то тогда
j = dS — zS = dN — zN.
Особенно удобны способы, основанные на измерении окулярным микрометром малых разностей зенитных расстояний северных и южных звёзд в меридиане (см. Талькотта способ). В способах соответственных высот отмечают моменты T1 и T2 прохождений двух звёзд через один и тот же альмукантарат. Если известна j, то получают u (см. Цингера способ), а если известна u, то определяют j (см. Певцова способ). Из наблюдений серии равномерно распределённых по азимуту звёзд на постоянной высоте 45° или 30° определяют j и l (см. Мазаева способ).
Азимут а* небесного светила определяют, измеряя его часовой угол или зенитное расстояние и зная широту j места наблюдения. Прибавляя к азимуту наблюдаемого светила (обычно Полярной звезды) горизонтальный угол Q между ним и земным предметом, получают азимут а земного предмета.
Разность долгот двух пунктов равна разности местных звёздных времён в этих пунктах или разности поправок хронометра, отнесённых к одному физическому моменту по известному ходу часов, так что l2 — l1 = s2 — s1 = (T + u2) — (Т + u1) = u2 — u1 + T2 — T1. Долготы l отсчитываются от меридиана Гринвича. Поэтому l = s — S = u — U. Поправки хронометра u относительно местного звёздного времени s определяют из наблюдений звёзд, а U относительно гринвичского звёздного времени S — из приёма ритмических сигналов времени по радиотелеграфу. В современных высокоточных работах ошибки определения широты, долготы и азимута не превышают ± 0,5".
Лит.: Цингер Н. Я., Курс практической астрономии, М., 1924: Вентцель М. К., Полевая астрономия, ч. 1—2, М., 1938—40; Блажко С. Н. . Курс практической астрономии, М. — Л., 1951; Цветков К. А., Практическая астрономия, 2 изд., М., 1951; Кузнецов А. Н., Геодезическая астрономия, М., 1966.
А .В. Буткевич.
Рис. к ст. Геодезическая астрономия.
Геодезическая гравиметрия
Геодезическая гравиметрия, раздел геодезии, в котором рассматриваются теории и методы использования результатов измерения силы тяжести для решения научных и практических задач геодезии. Основное содержание Г. г. составляют теории и методы определения внешнего поля потенциала W силы тяжести g Земли по измерениям на земной поверхности S и астрономо-геодезическим материалам. Г. г. включает также теорию нивелирных высот и обработку астрономо-геодезических сетей в связи с особенностями гравитационного поля Земли. Обычно из этого поля выделяют правильное и известное поле потенциала U т. н. нормальной Земли сравнения, представляемой в виде уровенного эллипсоида. Центры масс и оси вращения реальной и нормальной Земли совпадают. Основную задачу Г. г. сводят к выводу возмущающего потенциала Т = W — U, который определяют из решения граничных задач математической физики. На земной поверхности Т удовлетворяет граничному условию
где Н — высота над эллипсоидом, g— сила тяжести в поле U, HQ — нормальная высота, выводимая из условия, что приращение (gdh потенциала W от начала счёта высот измерено в поле U, dh — элементарное превышение геометрического нивелирования. Для вывода Т разработано несколько методов, которые сводятся к решению соответствующих интегральных уравнений.
В равнинных районах некоторые практические задачи можно решать упрощёнными методами вывода Т и его производных. Эти методы основаны на условии HQ = 0, вводимом после вычисления разностей g — у (HQ). Такой подход, например, допустим при астрономо-гравиметрическом нивелировании. В этом случае задачи Г. г. будут решены в явном виде замкнутыми формулами. Значение Т на земной поверхности определяет формула Стокса (1849)
R — радиус земной сферы, ds — её элемент и y— дуга большого круга между фиксированной точкой и текущей точкой, в которой задана сила тяжести. Эта формула описывает внешнее гравитационное поле земной сферы. Из неё можно вывести выражение для любого элемента гравитационного поля Земли в равнинных её областях.
Современная Г. г. основана на работах (1945—60) М. С. Молоденского и изучает способы решения граничных задач, условия их разрешимости, плотность и точность необходимых измерений.
Лит.: Молоденский М. С., Юркина М. И., Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, «Тр. Центрального научно-исследовательского института геодезии, аэросъёмки и картографии», 1960, в. 131; Бровар В. В., Магницкий В. А., Шимберев Б. П., Теория фигуры Земли, М., 1961.
М. И. Юркина.
Геодезическая задача
Геодези'ческая зада'ча, связана с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу. Прямой Г. з. называют вычисление геодезических координат — широты и долготы некоторой точки, лежащей на земном эллипсоиде, по координатам др. точки и по длине и азимуту геодезической линии, соединяющей эти точки. Обратная Г. з. заключается в определении по геодезическим координатам двух точек на земном эллипсоиде длины и азимута геодезической линии между этими точками. В зависимости от длины геодезической линии, соединяющей рассматриваемые точки, применяются различные методы и формулы, разработанные в геодезии. По размерам принятого земного эллипсоида составляются таблицы, облегчающие решение Г. з. и рассчитанные на использование определённой системы формул. Г. з. в том и другом виде возникает при обработке триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезическим координатам. В ряде случаев Г. з. решают в пространственных прямоугольных координатах по формулам аналитической геометрии в пространстве. В этих случаях вместо длины и азимута геодезических линии, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ГЕ)"
Книги похожие на "Большая Советская Энциклопедия (ГЕ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ГЕ)", комментарии и мнения людей о произведении.