» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ГЕ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ГЕ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ГЕ)" читать бесплатно онлайн.








  В качестве примера абстрактной геометрической теории можно рассмотреть Г. n-мерного евклидова пространства. Она строится путём простого обобщения основных положений обычной Г., причём для этого имеется несколько возможностей: можно, например, обобщать аксиомы обычной Г., но можно исходить и из задания точек координатами. При втором подходе n-мерное пространство определяют как множество каких-либо элементов-точек, задаваемых (каждая) n числами x1, x2,¼, xn, расположенными в определённом порядке, — координатами точек. Далее, расстояние между точками Х = (x1, x2,¼, xn) и X'= (x’1, x’2,¼, х’n) определяется формулой:

 

  что является прямым обобщением известной формулы для расстояния в трёхмерном пространстве. Движение определяют как преобразование фигуры, которое не изменяет расстояний между её точками. Тогда предмет n-мерной Г. определяется как исследование тех свойств фигур, которые не меняются при движениях. На этой основе легко вводятся понятия о прямой, о плоскостях различного числа измерений от двух до n—1, о шаре и т.д. Т. о. складывается богатая содержанием теория, во многом аналогичная обычной евклидовой Г., но во многом и отличная от неё. Нередко бывает, что результаты, полученные для трёхмерного пространства, легко переносятся с соответствующими изменениями на пространство любого числа измерений. Например, теорема о том, что среди всех тел одинакового объёма наименьшую площадь поверхности имеет шар, читается дословно так же в пространстве любого числа измерений [нужно лишь иметь в виду n-мерный объём, (n—1)-мерную площадь и n-мерный шар, которые определяются вполне аналогично соответствующим понятиям обычной Г.]. Далее, в n-мерном пространстве объём призмы равен произведению площади основания на высоту, а объём пирамиды — такому произведению, деленному на n. Такие примеры можно продолжить. С др. стороны, в многомерных пространствах обнаруживаются также качественно новые факты.

  Истолкования геометрии. Одна и та же геометрическая теория допускает разные приложения, разные истолкования (осуществления, модели, или интерпретации). Всякое приложение теории и есть не что иное, как осуществление некоторых её выводов в соответствующей области явлений.

  Возможность разных осуществлений является общим свойством всякой математической теории. Так, арифметические соотношения реализуются на самых различных наборах предметов; одно и то же уравнение описывает часто совсем разные явления. Математика рассматривает лишь форму явления, отвлекаясь от содержания, а с точки зрения формы многие качественно различные явления оказываются часто сходными. Разнообразие приложений математики и, в частности, Г. обеспечивается именно её абстрактным характером. Считают, что некоторая система объектов (область явлений) даёт осуществление теории, если отношения в этой области объектов могут быть описаны на языке теории так, что каждое утверждение теории выражает тот или иной факт, имеющий место в рассматриваемой области. В частности, если теория строится на основе некоторой системы аксиом, то истолкование этой теории состоит в таком сопоставлении её понятий с некоторыми объектами и их отношениями, при котором аксиомы оказываются выполненными для этих объектов.

  Евклидова Г. возникла как отражение фактов действительности. Её обычная интерпретация, в которой прямыми считаются натянутые нити, движением — механическое перемещение и т.д., предшествует Г. как математической теории. Вопрос о других интерпретациях не ставился и не мог быть поставлен, пока не выявилось более абстрактное понимание геометрии. Лобачевский создал неевклидову Г. как возможную геометрию, и тогда возник вопрос о её реальном истолковании. Эта задача была решена в 1868 Э. Бельтрами, который заметил, что геометрия Лобачевского совпадает с внутренней Г. поверхностей постоянной отрицательной кривизны, т. е. теоремы геометрии Лобачевского описывают геометрические факты на таких поверхностях (при этом роль прямых выполняют геодезические линии, а роль движений — изгибания поверхности на себя). Поскольку вместе с тем такая поверхность есть объект евклидовой Г., оказалось, что геометрия Лобачевского истолковывается в понятиях геометрии Евклида. Тем самым была доказана непротиворечивость геометрии Лобачевского, т.к. противоречие в ней в силу указанного истолкования влекло бы противоречие в геометрии Евклида.

  Т. о., выясняется двоякое значение истолкования геометрической теории — физическое и математическое. Если речь идёт об истолковании на конкретных объектах, то получается опытное доказательство истинности теории (конечно, с соответствующей точностью); если же сами объекты имеют абстрактный характер (как геометрическая поверхность в рамках геометрии Евклида), то теория связывается с другой математической теорией, в данном случае с евклидовой Г., а через неё с суммированными в ней опытными данными. Такое истолкование одной математической теории посредством другой стало математическим методом обоснования новых теорий, приёмом доказательства их непротиворечивости, поскольку противоречие в новой теории порождало бы противоречие в той теории, в которой она интерпретируется. Но теория, посредством которой производится истолкование, в свою очередь, нуждается в обосновании. Поэтому указанный математический метод не снимает того, что окончательным критерием истины для математических теорий остаётся практика. В настоящее время геометрические теории чаще всего истолковывают аналитически; например, точки на плоскости Лобачевского можно связывать с парами чисел х и у, прямые — определять уравнениями и т.п. Этот приём даёт обоснование теории потому, что сам математический анализ обоснован, в конечном счёте, огромной практикой его применения.

  Современная геометрия. Принятое в современной математике формально-математическое определение понятий пространства и фигуры исходит из понятия множества (см. Множеств теория). Пространство определяется как множество каких-либо элементов («точек») с условием, что в этом множестве установлены некоторые отношения, сходные с обычными пространственными отношениями. Множество цветов, множество состояний физической системы, множество непрерывных функций, заданных на отрезке [0, 1], и т.п. образуют пространства, где точками будут цвета, состояния, функции. Точнее, эти множества понимаются как пространства, если в них фиксируются только соответствующие отношения, например расстояние между точками, и те свойства и отношения, которые через них определяются. Так, расстояние между функциями можно определить как максимум абсолютной величины их разности: max|f (x)—g (x)|. Фигура определяется как произвольное множество точек в данном пространстве. (Иногда пространство — это система из множеств элементов. Например, в проективной Г. принято рассматривать точки, прямые и плоскости как равноправные исходные геометрические объекты, связанные отношениями «соединения».)

  Основные типы отношений, которые в разных комбинациях приводят ко всему разнообразию «пространств» современной Г., следующие:

  1) Общими отношениями, имеющимися во всяком множестве, являются отношения принадлежности и включения: точка принадлежит множеству, и одно множество есть часть другого. Если приняты во внимание только эти отношения, то в множестве не определяется ещё никакой «геометрии», оно не становится пространством. Однако, если выделены некоторые специальные фигуры (множества точек), то «геометрия» пространства может определяться законами связи точек с этими фигурами. Такую роль играют аксиомы сочетания в элементарной, аффинной, проективной Г.; здесь специальными множествами служат прямые и плоскости.

  Тот же принцип выделения некоторых специальных множеств позволяет определить понятие топологического пространства — пространства, в котором в качестве специальных множеств выделены «окрестности» точек (с условием, что точка принадлежит своей окрестности и каждая точка имеет хотя бы одну окрестность; наложение на окрестности дальнейших требований определяет тот или иной тип топологических пространств). Если всякая окрестность заданной точки имеет общие точки с некоторым множеством, то такая точка называется точкой прикосновения этого множества. Два множества можно назвать соприкасающимися, если хотя бы одно из них содержит точки прикосновения другого; пространство или фигура будет непрерывной, или, как говорят, связной, если её нельзя разбить на две несоприкасающиеся части; преобразование непрерывно, если оно не нарушает соприкосновений. Т. о., понятие топологического пространства служит для математического выражения понятия непрерывности. [Топологическое пространство можно определить также другими специальными множествами (замкнутыми, открытыми) или непосредственно отношением прикосновения, при котором любому множеству точек ставятся в соответствие его точки прикосновения.] Топологические пространства как таковые, множества в них и их преобразования служат предметом топологии. Предмет собственно Г. (в значительной её части) составляет исследование топологических пространств и фигур в них, наделённых ещё дополнительными свойствами.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ГЕ)"

Книги похожие на "Большая Советская Энциклопедия (ГЕ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ГЕ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.