БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ГЕ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ГЕ)" читать бесплатно онлайн.
История. Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen über die Geschichte der Mathematik, Bd 1—4, Lpz., 1907—08.
Курсы. а) Основания геометрии. Каган В. Ф., Основания геометрии, ч. 1, М. — Л., 1949; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961; Погорелов А. В., Основания геометрии, 3 изд., М., 1968.
б) Элементарная геометрия. Адамар Ж., Элементарная геометрия, пер. с франц., ч. 1, 3 изд., М., 1948, ч. 2, М., 1938; Погорелов А. В., Элементарная геометрия, М., 1969.
в) Аналитическая геометрия. Александров П. С., Лекции по аналитической геометрии..., М., 1968; Погорелов А. В., Аналитическая геометрия, 3 изд., М., 1968.
г) Дифференциальная геометрия. Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Погорелов А. В., Дифференциальная геометрия, М., 1969.
д) Начертательная и проективная геометрия. Глаголев Н. А., Начертательная геометрия, 3 изд., М. — Л., 1953; Ефимов Н. В., Высшая геометрия, 4 изд., М., 1961.
е) Риманова геометрия и её обобщения. Рашевский П. К., Риманова геометрия и тензорный анализ, 2 изд., М. — Л., 1964; Норден А. П., Пространства аффинной связности, М. — Л., 1950; Картан Э., Геометрия римановых пространств, пер. с франц., М. — Л., 1936; Эйзенхарт Л. П., Риманова геометрия, пер. с англ., М., 1948.
Некоторые монографии по геометрии. Федоров Е. С., Симметрия и структура кристаллов. Основные работы, М., 1949; Александров А. Д., Выпуклые многогранники, М. — Л., 1950; его же, Внутренняя геометрия выпуклых поверхностей, М. — Л., 1948; Погорелов А. В., Внешняя геометрия выпуклых поверхностей, М., 1969; Буземан Г., Геометрия геодезических, пер. с англ., М., 1962; его же, Выпуклые поверхности, пер. с англ., М., 1964; Картан Э., Метод подвижного репера, теория непрерывных групп и обобщенные пространства, пер. с франц., М. — Л., 1936; Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, М. — Л., 1948; его же, Проективно-дифференциальная геометрия, М. — Л., 1937; его же, Теория конгруенций, М. — Л., 1950; Схоутен И. А., Стройк Д. Дж., Введение в новые методы дифференциальной геометрии, пер. с англ., т. 1—2, М. — Л., 1939—48; Номидзу К., Группы Ли и дифференциальная геометрия, пер. с англ., М., 1960; Милнор Дж., Теория Морса, пер. с англ., М., 1965.
А. Д. Александров.
Геометрия резца
Геоме'трия резца', форма и углы заточки режущей части резца. Г. р. влияет на характер процесса резания материалов, на его производительность и экономичность, качество обработанной детали, стойкость (время работы до нормального затупления) резца и т.п. Все определения по Г. р., приводимые ниже, справедливы для др. режущих инструментов (свёрл, протяжек, фрез). Режущую часть составляют рабочие поверхности (рис. 1): передняя, по которой сходит образующаяся в процессе резания стружка, задняя главная и задняя вспомогательная, обращенные к обрабатываемой поверхности заготовки. Рабочие поверхности при пересечении образуют режущие кромки.
Главная режущая кромка, выполняющая основную работу при резании, образуется в результате пересечения передней и главной задней поверхности; вспомогательная режущая кромка — при пересечении передней и вспомогательной задней поверхности. Место сопряжения главной и вспомогательной режущих кромок называется вершиной резца. Вершина резца — наиболее ослабленная его часть, определяющая прочность режущей части кромки резца в целом; поэтому для повышения прочности вершина резца делается либо закруглённой (с радиусом 0,5—2 мм), либо в виде прямолинейной переходной режущей кромки (длиной 0,5—3 мм).
Элементы режущей части резца подразделяют на статические, определяющие углы заточки инструмента, и кинематические, зависящие от характера процесса резания и от установки резца. Углы заточки определяют форму режущей части при проектировании, изготовлении и контроле резца. Режущая часть резца имеет форму клина, заточенного под определёнными углами. Для определения углов установлены следующие координатные плоскости: плоскость резания и основная плоскость. Плоскость резания — это плоскость, касательная к поверхности резания и проходящая через главную режущую кромку. Основная плоскость — плоскость, параллельная продольной (параллельной оси заготовки) и поперечной (перпендикулярной оси заготовки) подачам резца. Эти координатные плоскости взаимно перпендикулярны. Главные углы резца определяются в главной секущей плоскости, перпендикулярной проекции главной режущей кромки на основную плоскость (рис. 2). Главный задний угол a — угол между главной задней поверхностью резца и плоскостью резания. При выборе заднего угла, во избежание трения задней поверхности резца об обрабатываемую поверхность и поверхность резания, учитывают величину подачи: чем она больше, тем больше задний угол. Угол заострения b — угол между передней и главной задней поверхностями резца. Главный передний угол g — угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания. Выбор переднего угла зависит прежде всего от физико-механических свойств обрабатываемого материала. Чем больше передний угол, тем легче процесс образования стружки, тем меньше усилие резания и затрачиваемая мощность. Чем выше твёрдость обрабатываемого материала, тем меньшие значения передних углов резца принимают для его обработки. Угол резания d — угол между передней поверхностью резца и плоскостью резания. Главный угол в плане j— угол между направлением подачи и проекцией главной режущей кромки на основную плоскость; вспомогательный угол в плане j1 — угол между направлением подачи и проекцией вспомогательной режущей кромки на основную плоскость. Углы j и j1 определяют, с одной стороны, условия работы режущей кромки, а с другой — распределение нагрузки от силы резания. Чем меньше угол в плане, тем (при неизменной глубине резания и подаче) меньше тепловая и силовая нагрузки на единицу длины главной режущей кромки, а следовательно, лучше условия работы. Уменьшение угла в плане ниже оптимального значения может привести к чрезмерной деформации обрабатываемой заготовки, к снижению точности обработки и вибрациям. Угол при вершине в плане e — угол между проекциями режущих кромок на основную плоскость: e = 180°— (j +j1). Угол в плане переходной (прямолинейной) режущей кромки j0 — угол между направлением подачи и проекцией переходной режущей кромки на основную плоскость: обычно j0 = j /2. Угол наклона главной режущей кромки l — угол, заключённый между режущей кромкой и линией, проведённой через вершину резца параллельно основной плоскости; угол l положительный, когда вершина резца — наинизшая точка режущей кромки; отрицательный, когда вершина резца — наивысшая точка, и равен нулю, если главная режущая кромка параллельна основной плоскости. Угол l оказывает влияние на направление схода стружки.
Лит. см. при ст. Обработка металлов резанием.
В. В. Данилевский.
Рис. 2. Углы резания.
Рис. 1. Схема процесса резания (а) и основные элементы резца (б).
Геомеханика
Геомеха'ника (от гео... и механика), наука о механических состояниях земной коры и процессах, развивающихся в ней вследствие различных естественных физических воздействий. Главные из них: термические (остывание, нагревание) и механические (притяжение масс Земли и др. небесных тел; центробежные силы, обусловленные вращением Земли).
Цель Г. — объяснение происшедших и предсказание развития предстоящих процессов изменения напряженно-деформационного состояния разных участков земной коры: её твёрдой, жидкой и газообразной фаз. Основная задача Г. — установление объективных закономерностей формирования механических свойств горных пород и протекания процессов перераспределения напряжений, деформирования, перемещения, разрушения и упрочнения участков земной коры. Г. зародилась как раздел геофизики на рубеже 19 и 20 вв. на стыке геологии и механики и особенно тесно связана с инженерной геологией, механикой сплошной среды, гидро- и газомеханикой, термодинамикой. Методы этих наук широко используются в геомеханических исследованиях.
Лит.: Тер-Степанян Г. И., Ближайшие задачи геомеханики, «Проблемы геомеханики», Ер., 1967, № 1; Wöhlbier H., Bodenmechanik und Bergbau, «Bergbau-Wissenschaften», 1965, Bd 12, № 15—16.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ГЕ)"
Книги похожие на "Большая Советская Энциклопедия (ГЕ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ГЕ)", комментарии и мнения людей о произведении.