БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ГЕ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ГЕ)" читать бесплатно онлайн.
Распределение химических элементов. Земля, как и др. планеты земного типа и Луна, имеет оболочечное строение; она состоит из ряда геосфер: ядра, мантии, земной коры, гидросферы и атмосферы (см. Земля). Твёрдые оболочки Земли, слагающие их горные породы, парагенетические ассоциации минералов и т. п., как правило, — сложные многокомпонентные силикатные системы. Процессы, при которых они образуются, идут с конечными скоростями и являются необратимыми. В Г. мы встречаемся с неравновесными системами, которые характеризуются массой, объёмом, энтропией, давлением, температурой, химическими потенциалами. Для применения термодинамики в Г. необходимо знать поведение конкретных фаз, компонентов и систем в условиях геологической обстановки, в частности в большом диапазоне давлений и температур. Так, например, общее представление о направлении геохимического процесса даёт Ле Шателье — Брауна принцип, согласно которому в любой системе, находящейся под действием внешних сил, изменение какого-либо внешнего фактора вызывает превращение, направленное на компенсацию действия этого фактора. По действующих масс закону изменение активности одного из компонентов системы смещает равновесие. Например, в реакции
равновесие смещается вправо, т. к. ангидрит выпадает из раствора. В реакции
начинающейся при температуре выше 350 °С, равновесие сдвигается вправо, т. к. одновременно с отложением минерала волластонита CaCO3 образуется углекислота, удаляющаяся из системы. С повышением температуры в реакциях с участием газовой фазы равновесие смещается в сторону меньшего объёма газовых компонентов. Например, в реакции
равновесие сдвигается вправо. Высокое давление (газовое и литостатическое) изменяет направление и характер кристаллизации магмы.
Условия равновесия подчиняются также правилу фаз Гиббса (см. Фаз правило), согласно которому число термодинамических степеней свободы системы f = k — n + 2, где n — число фаз в системе, k — число компонентов. Поскольку в закрытой системе число степеней свободы f £ 2 (давление и температура), то число фаз n ³ k. Это минералогическое правило фаз, впервые в Г. примененное В. М. Гольдшмидтом, оправдывается для разнообразных горных пород.
Закономерности распределения отдельных элементов по многочисленным фазам — минералам зависят главным образом от строения внешних электронных оболочек атомов. В Г. поэтому широко используются закономерности, установленные кристаллохимией. Ионы и атомы в кристаллических решётках имеют разные радиусы Ri. Величина Ri связана с положением химичекого элемента в системе Менделеева. По вертикальным группам Ri обычно растет с увеличением атомной массы и уменьшается с увеличением валентности иона в пределах периода (см. табл. 2; цифры со стрелками обозначают поля элементов (оконтурены жирной линией): 1 — литофильных; 2 — халькофильных; 3 — сидерофильных. Для каждого элемента приведены значения атомного радиуса (0) и ионных радиусов при различных валентностях и координационных числах (обозначены римскими цифрами). Звёздочка обозначает пара- или ферромагнитное состояние переходных элементов; отсутствие звёздочки — диамагнитное состояние. Атомные радиусы даны по Дж. Слейтеру, ионные — по P. Д. Шеннону и К. Г. Превитту, ионные (в скобках) — по Л. Аренсу).
В природных процессах разделения ионы и атомы сортируются по своим размерам. Кристаллические решётки главных породообразующих минералов принимают одни ионы (или атомы) и не принимают другие, в зависимости от их величины, заряда и др. свойств. Если ионы разновалентны, но имеют близкий размер Ri, в решётку чаще всего входит ион с большим зарядом. Если ионы имеют одинаковую валентность и по размеру различаются не больше чем на 15%, они часто изоморфно замещаются в кристаллических решётках; происходит замещение атома атомом, иона ионом или группы атомов группой атомов, в зависимости от типа решётки, размеров Ri, заряда и т. д. (см. Изоморфизм). Изоморфное замещение играет огромную роль в распределении элементов по различным минералам. Использование Ri в Г. объяснило причину ассоциации таких разнородных элементов, как U, Th и редкоземельных элементов (в минералах торианит, иттриалит и др.), а также постоянную ассоциацию редкоземельных элементов. При деформации одного иона другим в соединении, имеющем катион малого радиуса и анион большого радиуса, возникает т. н. поляризация, которая нарушает физико-химические свойства вещества — твёрдость, летучесть и многие др. Отношение Ri катиона/ Ri аниона определяет число атомов, окружающих центральный атом в соединении, — его координацию, т. е. координационное число. Оно в свою очередь указывает на характер и строение кристаллической решётки. Координационное число может изменяться в зависимости от условий образования минерала. Кристаллические решётки минералов имеют различную структуру — от очень простых и симметричных построек из плотно упакованных шаров до весьма сложных с низкой степенью симметрии. При кристаллизации атомы и ионы стремятся расположиться в кристаллической решётке таким образом, чтобы была минимальной энергия кристаллической решётки. На основе всех этих данных была создана геохимическая классификация элементов, опирающаяся на физико-химические свойства химических элементов (табл. 3).
Табл. 3. — Геохимическая классификация химических элементов
Сидерофильные (железо) Халькофильные (сульфиды) Литофильные (силикаты и др.) Fe, Ni, Co, Ru, Rh, Rd, Os, Ir, Pt, (Mo), Au, Re, (P), (As), (C), (Ge), (Ga),(Sn), (Sb), (Cu) S, Se, Te, Cu, Zn, Cd, Pb, Sn, Mo, Ge, As, Ga, Sb, Bi, Ag, Hg, In, Tl, (Fe), (Ni), (Co) H, O, N, Si, Ti, Zr, Hf, F, Cl, Br, I, B, Al, Sc, Y, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ra, V, Cr, Mn, W, Th, Nb, Ta, U, Ac, Pa, (S), (P), (Sn), (C), (Ga), (Fe), (Ni), (Go), редкоземельные элементыС открытием изотопов стала развиваться Г. изотопов — изучение процессов разделения изотопов химических элементов в природных процессах, особенно лёгких атомов Н, С, О, N, S и др. Этим методом часто удаётся установить способ и условия разделения химических элементов и образования конкретных минералов и рудных залежей
Геохимические процессы разделения элементов на Земле поддерживаются прежде всего теплом, генерируемым радиоактивными элементами (радиогенное тепло), гравитационной энергией. На поверхности Земли значительную роль играет энергия солнечных лучей, которая, в частности, трансформируется живым веществом в химическую энергию нефтей и углей.
Геохимические процессы. Первичное разделение холодного недифференцированного вещества Земли на оболочки произошло под влиянием тепла адиабатического сжатия планеты и радиогенного тепла. В мантии Земли на различных глубинах, особенно в астеносфере, возникали многочисленные расплавленные очаги. Разделение на оболочки шло путём зонного плавления, которое не требует полного расплавления мантии. Силикатное вещество планеты разделялось на тугоплавкую фазу — ультраосновные породы верхней мантии, и легкоплавкую фазу — основные породы (базальты) земной коры. Легкоплавкое вещество проплавляло кровлю магматической камеры, а тугоплавкое кристаллизовалось на дне камеры; т. о. легкоплавкое вещество перемещалось вверх к поверхности Земли. При этом метасиликаты инконгруентно разлагались на ортосиликаты и кремнекислоту, обогащенную химическими элементами, понижающими температуру плавления: щелочными элементами, Si, Ca, Al, U, Th, Sr и др. редкими литофильными элементами. Вещества, повышающие температуру плавления (Mg. Fe, Ni, Co, Cr и др.), сохранились по преимуществу в тугоплавкой фазе, т. е. остались в мантии Земли. Вместе с зонным плавлением шёл процесс дегазации верхней мантии.
Процессы выплавления и дегазации вещества мантии имеют периодический характер. После того как произошёл вынос тепла и вещества из глубин на поверхность Земли, требовалось время на новое разогревание очага. С таким геохимическим циклом связан весь ритм тектоно-магматической и вулканической деятельности и метаморфических преобразований. Этот процесс шёл также на Луне и, по-видимому, на всех планетах земного типа. Химическая эволюция Земли поддерживается и регулируется непрерывным процессом выплавления и дегазации вещества мантии за счёт энергии радиоактивного распада.
Вещество мантии Земли (перидотиты, дуниты и др. ультраосновные породы) имеет химический состав, приближающийся к метеоритному (табл. 4).
Табл. 4 — Химический состав горных пород Земли, Луны и метеоритов
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ГЕ)"
Книги похожие на "Большая Советская Энциклопедия (ГЕ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ГЕ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ГЕ)", комментарии и мнения людей о произведении.




























