» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ИЗ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ИЗ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ИЗ)" читать бесплатно онлайн.








  Лит.: Маликов С. Ф., Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Маликов С. Ф., Введение в технику измерений, 2 изд., М., 1952; Яноши Л., Теория и практика обработки результатов измерений, пер. с англ., 2 изд., М., 1968; «Измерительная техника», 1961, № 12: 1962, № 4, 6, 8, 9, 10.

  К. П. Широков.

  В математической теории И. отвлекаются от ограниченной точности физических И. Задача И. величины Q при помощи единицы меры U состоит в нахождении числового множителя q в равенстве

                      (1)

при этом Q и U считаются положительными скалярными величинами одного и того же рода (см. Величина ), а множитель q — положительное действительное число, которое может быть как рациональным, так и иррациональным. Для рационального q = m/n (m и n — натуральные числа) равенство (1) имеет весьма простой смысл: оно означает, что существует такая величина V (n -я доля от U ), которая, будучи взята слагаемым n раз, даёт U, будучи же взята слагаемым m раз, даёт Q :

.

  В этом случае величины Q и U называются соизмеримыми. Для несоизмеримых величин U и Q множитель q иррационален (например, равен числу p, если Q есть длина окружности, а U — её диаметр). В этом случае самое определение смысла равенства (1) несколько сложнее. Можно определить его так: равенство (1) обозначает, что для любого рационального числа r

                         (2)

Достаточно потребовать, чтобы условие (2) выполнялось для всех десятичных приближений к q по недостатку и по избытку. Следует отметить, что исторически само понятие иррационального числа возникло из задачи И., так что первоначальная задача в случае несоизмеримых величин заключалась собственно не в том, чтобы определить смысл равенства (1), исходя из готовой теории действительных чисел, а в том, чтобы установить смысл символа q , отображающего результат сравнения величины Q с единицей меры U. Например, по определению немецкого математика Р. Дедекинда, иррациональное число есть «сечение» в системе рациональных чисел. Такое сечение и появляется естественно при сравнении двух несоизмеримых величин Q и U. По отношению к этим величинам все рациональные числа разделяются на два класса: класс R 1 рациональных чисел r , для которых Q > rU , и класс R 2 рациональных чисел r, для которых Q < rU.

  Большое значение имеет приближённое И. величин при помощи рациональных чисел. Ошибка приближённого равенства Q » rU равна D = (rqU ). Естественно искать такие r = m /n, для которых ошибка меньше, чем при любом числе r' = m’ /n’ с знаменателем n' £ n. Такого рода приближения доставляются подходящими дробями r 1 , r 2 , r 3 ,... к числу q , которые находятся при помощи теории непрерывных дробей . Например, для длины окружности S , измеряемой диаметром U, приближения таковы:

и т. д.; для длины года Q , измеряемой сутками U , приближения таковы:

  А. Н. Колмогоров.

  И. в социальном исследовании (в статистике, социологии, психологии, экономике, этнографии), способ упорядочения социальной информации, при котором системы чисел и отношений между ними ставятся в соответствие ряду измеряемых социальных фактов. Различные меры повторяемости, воспроизводимости социальных фактов и являются социальными измерениями, или шкалами. С развитием общества получают распространение простые шкалы — денежная оценка труда, разряды квалификации, оценка успехов в обучении (система баллов), спорте и др. И. в общественных науках отличается от таких «естественных» шкал точным определением измеряемых признаков и правил построения шкалы.

  В социальных исследованиях И. впервые вошли в употребление в 1920—30, когда исследователи столкнулись с проблемой достоверности при изучении общественного сознания, социально-психологических установок (отношений), социального и профессионального статусов, общественного мнения, качественных характеристик условий труда и быта и т. д. Эти И. являются примером стандартизованной групповой оценки, когда с помощью методов выборочной статистики измеряется «интенсивность» общественного мнения.

  И. разделяются на три типа: 1) номинальное — числа, приписываемые объектам на номинальной шкале, лишь констатируют отличие или тождество этих объектов, т. е. номинальная шкала есть, по существу, группировка или классификация. 2) порядковое — числа, приписываемые объектам на шкале, упорядочивают их по измеряемому признаку, но указывают лишь на порядок размещения объектов на шкале, а не на расстояние между объектами или, тем более, координаты; 3) интервальное — числа, приписываемые объектам на шкале, указывают не только на порядок объектов, но и на расстояние между ними. Интервальным И. является, например, шкала привлекательности профессий. Такая шкала, придавая каждой профессии условный балл, позволяет сравнивать профессии по популярности, т. е. утверждать, что, например, профессия шофёра на М баллов популярнее профессии слесаря и на К баллов менее популярна, чем профессия лётчика. Однако она не позволяет утверждать, что интерес к профессиям шофёра и слесаря превышает интерес к профессии лётчика, если сумма соответствующих баллов превышает балл профессии лётчика. Нахождение количественной меры социальных явлений и процессов ограничивается этими тремя типами И. Предпринимаются попытки создания четвёртого типа И. — количественного, с введением единицы И.

  Лит.: Ядов В. А., Методология и процедуры социологических исследований, Тарту, 1968; Здравомыслов А. Г., Методология и процедура социологических исследований, М., 1969.

  Ю. Б. Самсонов.

Измерение животных

Измере'ние живо'тных, обмер различных частей (статей) тела животных. Проводится при оценке экстерьера и конституции животных, для определения живой массы животных без взвешивания, для контроля за ростом и развитием молодняка и т.п. Различают 4 основные группы промеров: высотные, промеры длины, широтные и обхваты (промеры груди и конечностей). В зависимости от поставленных задач и видовых особенностей животных определяют различное число промеров: при научных исследованиях, требующих подробного обследования животных, — от 28 до 52; при записи в племенные книги, например, крупного рогатого скота — 12, лошадей — 4, свиней — 2—4 и т. д. Основные промеры, характеризующие величину животного и пропорции его телосложения: высота в холке, косая длина туловища, обхват груди за лопатками, обхват пясти (рис. ); к основным промерам с.-х. птицы относят также длину киля и голени. Измеряют животных специальной мерной палкой, мерным циркулем и мерной лентой, обычно утром, до кормления, соблюдая определённые правила: животное должно стоять на ровной площадке, не искривляя туловища и шеи; ноги при осмотре сбоку должны находиться в одной плоскости.

  Полученные в результате систематического И. ж. данные, обработанные вариационно-статистическим методом, позволяют сравнивать между собой группы животных разных пород или одной породы, но разводимых в разных районах при различных условиях кормления и содержания; сравнивать экстерьерные и другие особенности предков и потомков, прослеживая эволюцию породы; устанавливать стандарты пород и т. п. Цифровые значения промеров дают возможность устанавливать индексы телосложения животных (отношение промеров анатомически связанных между собой частей тела в процентах), более точно характеризующие тип телосложения животных или их групп. Метод И. ж. значительно уточняет глазомерную оценку.

  Лит.: Кудряшов С. А., Практические занятия по курсу разведения сельскохозяйственных животных, 2 изд., М., 1950; Борисенко Е. Я., Баранов К. В., Лисицын А. П., Практикум по разведению сельскохозяйственных животных, М., 1965.

  Н. П. Герчиков.

Промеры сельскохозяйственных животных: 1 — высота в холке: 2 — высота в крестце: 3 — длина головы; 4 — косая длина туловища; 5 — косая длина зада; 6 — ширина груди за лопатками; 7 — ширина в маклоках; 8 — наибольшая ширина лба; 9 — обхват груди за лопатками; 10 — обхват пясти; 11 — глубина груди.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ИЗ)"

Книги похожие на "Большая Советская Энциклопедия (ИЗ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ИЗ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.