БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ИЗ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ИЗ)" читать бесплатно онлайн.
Лит.: Илиел Э., Стереохимия соединений углерода, пер. с англ., М., 1965; Терентьев А. П., Потапов В. М., Основы стереохимии, М.—Л., 1964.
Б. Л. Дяткин.
Изомерия атомных ядер
Изомери'я а'томных я'дер, существование у некоторых атомных ядер метастабильных состояний — возбуждённых состояний с относительно большими временами жизни (см. Ядро атомное ). Некоторые атомные ядра имеют несколько изомерных состояний с разными временами жизни. Понятие И. а. я. Возникло в 1921, когда немецким физиком О. Ганом было открыто радиоактивное вещество уран Z (UZ), которое как по химическим свойствам, так и по массовому числу не отличалось от известного тогда урана UX2 . Позднее было установлено, что UZ и UX2 — два состояния одного и того же изотопа 234 Pa с разными энергией и периодом полураспада. По аналогии с изомерными органическими соединениями (см. Изомерия химических соединений) UZ и UX2 стали называться ядерными изомерами. В 1935 Б. В. Курчатовым, И. В. Курчатовым, Л. В. Мысовским и Л. И. Русиновым было обнаружено изомерное состояние у искусственного радиоактивного изотопа брома 80 Br, что послужило началом систематического изучения И. а. я. Известно большое число изомерных состояний с периодами полураспада от 10-6 сек до многих лет. Одним из наиболее долгоживущих изомеров является 236 Np с периодом полураспада 5500 лет.
Распад изомеров чаще всего сопровождается испусканием конверсионных электронов (см. Конверсия внутренняя ) или g-квантов; в результате образуется ядро того же изотопа, но в более низком энергетическом состоянии. Иногда более вероятным является бета-распад , который приводит к возникновению изотопа другого элемента (рис. ). Изомеры тяжёлых элементов могут распадаться путём самопроизвольного деления (см. Ядра атомного деление ).
И. а. я. обусловлена особенностями структуры атомных ядер. Изомерные состояния образуются в тех случаях, когда переход ядра из состояния с большей энергией в более низкое энергетическое состояние путём испускания g-кванта затруднён. Чаще всего это связано с большим различием в значениях спинов S ядер в этих состояниях. Если при этом различие энергии в двух состояниях невелико, то вероятность испускания g-кванта становится малой и, как следствие, период полураспада возбуждённого состояния оказывается большим. Изомеры особенно часто встречаются у ядер в определённых областях значений массовых чисел (острова изомерии). Этот факт объясняет оболочечная модель ядра, которая предсказывает существование близких по энергии ядерных уровней с большим различием спинов при определённых значениях чисел протонов и нейтронов, входящих в состав ядра (см. Ядерные модели ). В некоторых случаях (например, для 180 Hf) возникновение изомеров связано с существенным различием формы ядра в двух близких энергетических состояниях, что также приводит к уменьшению вероятности g-излучения.
Лит.: Мухин К. Н., Введение в ядерную физику, М., 1963; Мошковский С., Теория мультипольного излучения, в кн.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 3, М., 1969, с. 5.
Н. Н. Делягин.
Рис. к статье Изомерия атомных ядер.
Изомеры
Изоме'ры, химические соединения, одинаковые по составу и молекулярной массе, но различающиеся по строению и свойствам (химическим и физическим). Подробнее см. Изомерия химических соединений. О ядерных И. см. Изомерия атомных ядер .
Изометрическое мышечное сокращение
Изометри'ческое мы'шечное сокраще'ние, сокращение мышцы, выражающееся в усилении её напряжения при неизменной длине (например, сокращение мышцы конечности, оба конца которой закреплены неподвижно). В организме к И. м. с. приближается напряжение, развиваемое мышцей при попытке поднять непосильный груз. Ср. Изотоническое мышечное сокращение .
Изометрия
Изоме'три'я (от изо... и ...метрия ) в биологии, сохранение пропорций органов и частей тела в период роста организма.
Изоморфизм (матем.)
Изоморфи'зм, одно из основных понятий современной математики, возникшее сначала в пределах алгебры в применении к таким алгебраическим образованиям, как группы , кольца , поля и т. п., но оказавшееся весьма существенным для общего понимания строения и области возможных применений каждого раздела математики.
Понятие И. относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть систему R всех действительных чисел с заданной на ней операцией сложения x = x 1 + x 1 и систему Р положительных действительных чисел с заданной на ней операцией умножения y = y 1 y 2 . Можно показать, что внутреннее «устройство» этих двух систем чисел совершенно одинаково. Для этого достаточно систему R отобразить в систему Р , поставив в соответствие числу х из R число у = ax (а > 1) из Р. Тогда сумме x = x 1 + x 2 будет соответствовать произведение y = y 1 y 2 чисел соответствующих x 1 и x 2 . Обратное отображение Р на R имеет при этом вид x = loga y. Из любого предложения, относящегося к сложению чисел системы R , можно извлечь соответствующее ему предложение, относящееся к умножению чисел системы Р . Например, если в R сумма
членов арифметической прогрессии выражается формулой
то в Р произведение
членов геометрической прогрессии выражается формулой
(умножению на n в системе R соответствует при переходе к системе Р возведение в n -ю степень, а делению на два — извлечение квадратного корня).
Изучение свойств одной из изоморфных систем в значительной мере (а с абстрактно-математической точки зрения — полностью) сводится к изучению свойств другой. Любую систему объектов S', изоморфную системе S , можно рассматривать как «модель» системы S («моделировать систему S при помощи системы S' ») и сводить изучение самых разнообразных свойств системы S к изучению свойств «модели» S'.
Общее определение И. систем объектов с заданными на них в конечном числе отношениями между постоянным для каждого отношения числом объектов таково. Пусть даны две системы объектов S и S', причём в первой определены отношения
а во второй — отношения
Системы S и S' с указанными в них отношениями называются изоморфными, если их можно поставить в такое взаимно однозначное соответствие
(где х — произвольный элемент S , а x' — произвольный элемент S' ), что из наличия Fk (x 1 ,x 2 ,... ) вытекает F'k (х' 1 ,х' 2 ,... ), и наоборот. Само указанное соответствие называется при этом изоморфным отображением, или изоморфизмом. [В приведённом выше примере в системе R определено отношение F (x, x 1 , x 2 ), где x = x 1 + x 2 , в системе Р — отношение F' (y , y 1 , y 2 ), где у = у 1 у 2 ; взаимно однозначное соответствие устанавливается по формулам у = ax , х = 1oga y. ]
Понятие И. возникло в теории групп, где впервые был понят тот факт, что изучение внутренней структуры двух изоморфных систем объектов представляет собой одну и ту же задачу.
Аксиомы любой математической теории определяют систему объектов, изучаемую этой теорией, всегда только с точностью до И.: аксиоматически построенная математическая теория, применимая к какой-либо одной системе объектов, всегда полностью применима и к другой. Поэтому каждая аксиоматически изложенная математическая теория допускает не одну, а много «интерпретаций», или «моделей» (см., например, в ст. Геометрия , раздел Истолкование геометрии).
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ИЗ)"
Книги похожие на "Большая Советская Энциклопедия (ИЗ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ИЗ)", комментарии и мнения людей о произведении.