» » » » БСЭ БСЭ - Большая Советская Энциклопедия (КВ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (КВ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (КВ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (КВ)
Рейтинг:
Название:
Большая Советская Энциклопедия (КВ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (КВ)"

Описание и краткое содержание "Большая Советская Энциклопедия (КВ)" читать бесплатно онлайн.








, т. е. .

  Можно показать, что спектр его собственных значений непрерывен, а амплитуда вероятности  есть де-бройлевская волна ( — собственный вектор оператора импульса ). Если задана энергия системы как функция координат и импульсов частиц, Н (р, х), то знание коммутатора  достаточно для нахождения , а также уровней энергии как собственных значений оператора полной энергии .

  На основании определения момента количества движения Mz = хру — урх,... можно получить, что . Эти коммутационные соотношения справедливы и при учёте спинов частиц; их оказывается достаточно для определения собственного значения квадрата полного момента: , где квантовое число j — целое или полуцелое число, и его проекции , m = -j, -j + 1, …, + j.

  Уравнения движения квантовомеханической системы могут быть записаны в двух формах: в виде уравнения для вектора состояния

     (36)

— шрёдингеровская форма уравнения движения, и в виде уравнения для операторов (q-чисел)

     (37)

— гейзенберговская форма уравнений движения, наиболее близкая классической механике. Из гейзенберговской формы уравнений движения, в частности, следует, что средние значения физических величин изменяются по законам классической механики; это положение называется теоремой Эренфеста.

  Для логической структуры К. м. характерно присутствие двух совершенно разнородных по своей природе составляющих. Вектор состояния (волновая функция) однозначно определён в любой момент времени, если задан в начальный момент. В этой части теория вполне детерминистична. Но вектор состояния не есть наблюдаемая величина. О наблюдаемых на основе знания  можно сделать лишь статистические (вероятностные) предсказания. Результаты индивидуального измерения над квантовым объектом в общем случае, строго говоря, непредсказуемы. Предпринимались попытки восстановить идею полного детерминизма в классическом смысле введением предположения о неполноте квантовомеханического описания. Например, высказывалась гипотеза о наличии у квантовых объектов дополнительных степеней свободы — «скрытых параметров», учёт которых сделал бы поведение системы полностью детерминированным в смысле классической механики; неопределённость возникает только вследствие того, что эти «скрытые параметры» неизвестны и не учитываются. Однако Дж. Нейман доказал теорему о невозможности нестатистической интерпретации К. м. при сохранении её основного положения о соответствии между наблюдаемыми (физическими величинами) и операторами.

  Лит.: Классич. труды — Гейзенберг В., Физические принципы квантовой теории, Л. — М., 1932; Дирак П., Принципы квантовой механики, пер. с англ., М., 1960; Паули В., Общие принципы волновой механики, пер. с нем., М. — Л., 1947; Нейман И., Математические основы квантовой механики, пер. с нем., М., 1964. Учебники — Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 2 изд., М., 1963 (Теоретическая физика, т. 3); Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963; Давыдов А. С., Квантовая механика, М., 1963; Соколов А. А., Лоскутов Ю. М., Тернов И. М., Квантовая механика, М., 1962; Бом Д., Квантовая теория, пер. с англ., М., 1961; Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, пер. с англ., в. 8 и 9, М.,1966—67; Шифф Л., Квантовая механика, пер. с англ., 2 изд., М., 1959; Ферми Э., Квантовая механика, пер. с англ., М., 1965. Популярные книги — Борн М., Атомная физика, пер. с англ., 3 изд., М., 1970; Пайерлс Р. Е., Законы природы, пер. с англ., 2 изд., М., 1962.

  В. Б. Берестецкий.

Рис. 5 к ст. Квантовая механика.

Рис. 1 к ст. Квантовая механика.

Рис. 6 к ст. Квантовая механика.

Рис. 2 к ст. Квантовая механика.

Рис. 4 к ст. Квантовая механика.

Рис. 7 к ст. Квантовая механика.

Рис. 3 к ст. Квантовая механика.

Квантовая радиофизика

Ква'нтовая радиофи'зика, то же, что и квантовая электроника.

Квантовая статистика

Ква'нтовая стати'стика, раздел статистической физики, исследующий системы множества частиц, подчиняющихся законам квантовой механики. См. Статистическая физика.

Квантовая теория поля

Ква'нтовая тео'рия по'ля.

  Квантовая теория поля — квантовая теория систем с бесконечным числом степеней свободы (полей физических). К. т. п., возникшая как обобщение квантовой механики в связи с проблемой описания процессов порождения, поглощения и взаимных превращений элементарных частиц, нашла затем широкое применение в теории твёрдого тела, ядра атомного и др. и является теперь основным теоретическим методом исследования квантовых систем.

  I. Частицы и поля квантовой теории

  1. Двойственность классической теории. В классической теории, формирование которой в основном завершилось к началу 20 в., физическая картина мира складывается из двух элементов — частиц и полей. Частицы — маленькие комочки материи, движущиеся по законам классической механики Ньютона. Каждая из них имеет 3 степени свободы: её положение задаётся тремя координатами, например х, y, z, если зависимость координат от времени известна, то это даёт исчерпывающую информацию о движении частицы. Описание полей значительно сложнее. Задать, например, электрическое поле — значит задать его напряжённость Е во всех точках пространства. Т. о., для описания поля необходимо знать не 3 (как для материальной точки), а бесконечно большое число величин в каждый из моментов времени; иначе говоря, поле имеет бесконечное число степеней свободы. Естественно, что и законы динамики электромагнитного поля, установление которых обязано в основном исследованиям М. Фарадея и Дж. Максвелла, оказываются сложнее законов механики.

  Указанное различие между полями и частицами является главным, хотя и не единственным: частицы дискретны, а поля непрерывны; электромагнитное поле (электромагнитные волны) может порождаться и поглощаться, в то время как материальным точкам классической механики возникновение и исчезновение чуждо; наконец, электромагнитные волны могут, накладываясь, усиливать или ослаблять и даже полностью «гасить» друг друга (интерференция волн), чего, разумеется, не происходит при наложении потоков частиц. Хотя частицы и волны переплетены между собой сложной сетью взаимодействий, каждый из этих объектов выступает как носитель принципиально различных индивидуальных черт. Картине мира в классической теории присущи отчётливые черты двойственности. Открытие квантовых явлений поставило на место этой картины другую, которую можно назвать двуединой.

  2. Кванты электромагнитного поля. В 1900 М. Планк для объяснения закономерностей теплового излучения тел впервые ввёл в физику понятие о порции, или кванте, излучения. Энергия E такого кванта пропорциональна частоте n излучаемой электромагнитной волны, E = hn, где коэффициент пропорциональности h = 6,62×10–27 эрг×сек (позднее он был назван постоянной Планка). А. Эйнштейн обобщил эту идею Планка о дискретности излучения, предположив, что такая дискретность не связана с каким-то особым механизмом взаимодействия излучения с веществом, а внутренне присуща самому электромагнитному излучению. Электромагнитное излучение «состоит» из таких квантов — фотонов. Эти представления получили экспериментальное подтверждение — на их основе были объяснены закономерности фотоэффекта и Комптона эффекта.

  Т. о., электромагнитному излучению присущи черты дискретности, которые прежде приписывались лишь частицам. Подобно частице (корпускуле), фотон обладает определённой энергией, импульсом, спином и всегда существует как единое целое. Однако наряду с корпускулярными фотон обладает и волновыми свойствами, проявляющимися, например, в явлениях дифракции света и интерференции света. Поэтому его можно было бы назвать «волно-частицей».

  3. Корпускулярно-волновой дуализм. Двуединое, корпускулярно-волновое представление о кванте электромагнитного поля — фотоне — было распространено Л. де Бройлем на все виды материи. И электроны, и протоны, и любые др. частицы, согласно гипотезе де Бройля, обладают не только корпускулярными, но и волновыми свойствами, Это количественно проявляется в соотношениях де Бройля, связывающих такие «корпускулярные» величины, как энергия E и импульс р частицы, с величинами, характерными для волнового описания, — длиной волны l и частотой n:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (КВ)"

Книги похожие на "Большая Советская Энциклопедия (КВ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (КВ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (КВ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.