БСЭ БСЭ - Большая Советская Энциклопедия (КВ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (КВ)"
Описание и краткое содержание "Большая Советская Энциклопедия (КВ)" читать бесплатно онлайн.
3. Полевые методы в квантовой теории многих частиц. Математические методы К. т. п. (как уже отмечалось) находят применение при описании систем, состоящих из большого числа частиц: в физике твёрдого тела, атомного ядра и т.д. Роль вакуумных состояний в твёрдом теле, например, играют низшие энергетические состояния, в которые система переходит при минимальной энергии (т. е. при температуре Т ® 0). Если сообщить системе энергию (например, повышая её температуру), она перейдёт в возбужденное состояние. При малых энергиях процесс возбуждения системы можно рассматривать как образование некоторых элементарных возбуждений — процесс, подобный порождению частиц в К. т. п. Отдельные элементарные возбуждения в твёрдом теле ведут себя подобно частицам — обладают определенной энергией, импульсом, спином. Они называются квазичастицами. Эволюцию системы можно представить как столкновение, рассеяние, уничтожение и порождение квазичастиц, что и открывает путь к широкому применению методов К. т. п. (см. Твёрдое тело). Одним из наиболее ярких примеров, показывающих плодотворность методов К. т. п. в изучении твердого тела является теория сверхпроводимости.
4. Кванты — переносчики взаимодействия. В классической электродинамике взаимодействие между зарядами (и токами) осуществляется через поле: заряд порождает поле и это поле действует на другие заряды. В квантовой теории взаимодействие поля и заряда выглядит как испускание и поглощение зарядом квантов Поля — фотонов. Взаимодействие же между зарядами, например между двумя электронами в К. т. п. является результатом их обмена фотонами: каждый из электронов испускает фотоны (кванты переносящего взаимодействие электромагнитного поля), которые затем поглощаются др. электроном. Это справедливо и для др. физических полей: взаимодействие в К. т. п. — результат обмена квантами поля.
В этой достаточно наглядной картине взаимодействия есть, однако, момент, нуждающийся в дополнительном анализе. Пока взаимодействие не началось, каждая из частиц является свободной, а свободная частица не может ни испускать, ни поглощать квантов. Действительно, рассмотрим свободную неподвижную частицу (если частица равномерно движется, всегда можно перейти к такой инерциальной системе отсчёта, в которой она покоится). Запаса кинетической энергии у такой частицы нет, потенциальной — излучение энергетически невозможно. Несколько более сложные рассуждения убеждают и в неспособности свободной частицы поглощать кванты. Но если приведённые соображения справедливы, то, казалось бы, неизбежен вывод о невозможности появления взаимодействий в К. т. п.
Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы являются квантовыми объектами и что для них существенны неопределённостей соотношения. Эти соотношения связывают неопределённости координаты частицы (Dх) и её импульса (Dр):
(9)
Имеется и второе соотношение — для неопределённостей энергии DE и специфического времени Dt данного физического процесса (т. е. времени, в течение которого процесс протекает):
. (10)
Если рассматривается взаимодействие между частицами посредством обмена квантами поля (это поле часто называется промежуточным), то за Dt естественно принять продолжительность такого акта обмена. Вопрос о возможности испускания кванта свободной частицей отпадает: энергия частицы, согласно (10), не является точно определённой; при наличии же квантового разброса энергий DE законы сохранения энергии и импульса не препятствуют более ни испусканию, ни поглощению переносящих взаимодействие квантов, если только эти кванты имеют энергию ~ DE и существуют в течение промежутка времени .
Проведённые рассуждения не только устраняют указанный выше парадокс, но и позволяют получить важные физические выводы. Рассмотрим взаимодействие частиц в ядрах атомов. Ядра состоят из нуклонов, т. е. протонов и нейтронов. Экспериментально установлено, что вне пределов ядра, т. е. на расстояниях, больших примерно 10–12 см, взаимодействие неощутимо, хотя в пределах ядра оно заведомо велико. Это позволяет утверждать, что радиус действия ядерных сил имеет порядок L ~ 10–12 см. Именно такой путь пролетают, следовательно, кванты, переносящие взаимодействие между нуклонами в атомных ядрах. Время пребывания квантов «в пути», даже если принять, что они движутся с максимально возможной скоростью (со скоростью света с), не может быть меньше, чем Dt »×L/c. Согласно предыдущему, квантовый разброс энергии DE взаимодействующих нуклонов получается равным DE ~ . В пределах этого разброса и должна лежать энергия кванта — переносчика взаимодействия. Энергия каждой частицы массы m складывается из её энергии покоя, равной mc2, и кинетической энергии, растущей по мере увеличения импульса частицы. При не слишком быстром движении частиц кинетическая энергия мала по сравнению с mc2, так что можно принять DE » mc2. Тогда из предыдущей формулы следует, что квант, переносящий взаимодействия в ядре, должен иметь массу порядка . Если подставить в эту формулу численные значения величин, то оказывается, что масса кванта ядерного поля примерно в 200—300 раз больше массы электрона.
Такое полукачественное рассмотрение привело в 1935 японского физика-теоретика Х. Юкава к предсказанию новой частицы; позже эксперимент подтвердил существование такой частицы, названной пи-мезоном. Этот блистательный результат значительно укрепил веру в правильность квантовых представлений о взаимодействии как об обмене квантами промежуточного поля, веру, сохраняющуюся в значительной степени до сих пор, несмотря на то, что количественную мезонную теорию ядерных сил построить всё ещё не удалось.
Если рассмотреть 2 настолько тяжёлые частицы, что их можно считать классическими материальными точками, то взаимодействие между ними, возникающее в результате обмена квантами массы m, приводит к появлению потенциальной энергии взаимодействия частиц, равной
, (11)
где r — расстояние между частицами, a g — так называемая константа взаимодействия рассматриваемых частиц с полем квантов, переносящих взаимодействие (или иначе — заряд, соответствующий данному виду взаимодействия).
Если применить эту формулу к случаю, когда переносчиками взаимодействия являются кванты электромагнитного поля — фотоны, масса покоя которых m = 0, и учесть, что вместо g должен стоять электрический заряд е, то получится хорошо известная энергия кулоновского взаимодействия двух зарядов: Uэл = е2/r.
5. Графический метод описания процессов. Хотя в К. т. п. рассматриваются типично квантовые объекты, можно дать процессам взаимодействия и превращения частиц наглядные графические изображения. Такого рода графики впервые были введены американским физиком Р. Фейнманом и носят его имя. Графики, или диаграммы, Фейнмана, внешне похожи на изображение путей движения всех участвующих во взаимодействии частиц, если бы эти частицы были классическими (хотя ни о каком классическом описании не может быть и речи). Для изображения каждой свободной частицы вводят некоторую линию (которая, конечно, есть всего лишь графический символ распространения частицы): так, фотон изображают волнистой линией, электрон — сплошной. Иногда на линиях ставят стрелки, условно обозначающие «направление распространения» частицы. Ниже даны примеры таких диаграмм.
На рис. 1 изображена диаграмма, соответствующая рассеянию фотона на электроне: в начальном состоянии присутствуют один электрон и один фотон; в точке 1 они встречаются и происходит поглощение фотона электроном; в точке 2 появляется (испускается электроном) новый, конечный фотон. Это — одна из простейших диаграмм Комптон-эффекта.
Диаграмма на рис. 2 отражает обмен фотоном между двумя электронами: один электрон в точке 1 испускает фотон, который затем в точке 2 поглощается вторым электроном. Как уже говорилось, такого рода обмен приводит к появлению взаимодействия; т. о., данная диаграмма изображает элементарный акт электромагнитного взаимодействия двух электронов. Более сложные диаграммы, соответствующие такому взаимодействию, должны учитывать возможность обмена несколькими фотонами; одна из них изображена на рис. 3.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (КВ)"
Книги похожие на "Большая Советская Энциклопедия (КВ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (КВ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (КВ)", комментарии и мнения людей о произведении.