БСЭ БСЭ - Большая Советская Энциклопедия (ЛО)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ЛО)"
Описание и краткое содержание "Большая Советская Энциклопедия (ЛО)" читать бесплатно онлайн.
Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в современных автоматах. Управляющие схемы иных типов, в частности схемы из электронных ламп или полупроводниковых элементов, имеющие ещё большее практическое значение, также могут быть разрабатываемы с помощью математической Л., которая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык математической Л. оказался также применимым в теории программирования, создаваемой в связи с развитием машинной математики. Наконец, созданный математической Л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математическими методами.
А. А. Марков.
Научные учреждения и издания. Преподавание и исследовательская работа по Л. являются неотъемлемой частью научной и культурной жизни большинства стран мира. В СССР научно-исследовательская работа в области Л. ведётся в основном в научно-исследовательских центрах Москвы, Ленинграда, Новосибирска, Киева, Кишинева, Риги, Вильнюса, Тбилиси, Еревана и др. городов отделениями математических институтов АН СССР и союзных республик, институтами философии, кафедрами Л. университетов и некоторых др. вузов. Публикации работ по Л. в СССР осуществляются: в непериодических изданиях в форме тематических сборников и монографий (в частности, начиная с 1959 в серии «Математическая логика и основания математики»), в непериодических изданиях «Трудов Математического института им. В. А. Стеклова АН СССР» (с 1931), в сборниках «Алгебра и логика» (Новосибирск, с 1962), в «Записках» научных семинаров по Л., в математических и философских журналах. В реферативном журнале «Математика» и в реферативных журналах института научной информации по общественным наукам АН СССР систематически освещаются работы советских и зарубежных авторов по Л. Из специальных зарубежных изданий, освещающих проблематику Л., наиболее известны: международная монографическая серия «Studies in Logic...» (Amst., с 1965) и журналы: «The Journal of Symbolic Logic» (Providence, с 1936); «Zeitschrift für mathematische Logik und Grundlagen der Mathematik» (В., с 1955); «Archiv für mathematische Logik und Grundlagenforschung» (Stuttg., с 1950); «Logique et analyse» (Louvain, с 1958); «Journal of philosophical logic» (Dordrecht, с 1972); «International logic review» (Bologna, с 1970); «Studia Logica» (Warsz., с 1953); «Notre Dame Journal of formal Logic» (Notre Dame, с 1960).
Основную организационную работу, связанную с обменом научной информацией в области Л., осуществляет пользующаяся поддержкой ООН Ассоциация символической логики. Ассоциация организует международные конгрессы по Л., методологии и философии науки. Первый такой конгресс состоялся в 1960 в Станфорде (США), второй — в 1964 в Иерусалиме, третий — в 1967 в Амстердаме, четвёртый — в 1971 в Бухаресте.
З. А. Кузичева, М. М. Новосёлов.
Лит.: Основные классические работы. Аристотель, Аналитики первая и: вторая, пер. с греч., М., 1952; Leibniz G. W., Fragmente zur Logik, В., 1960; Кант И., Логика, пер. с нем., П., 1915; Милль Дж. С., Система логики силлогистической и индуктивной, пер. с англ., 2 изд., М., 1914; De Morgan A., Formal logic or the calculus of inference, necessary and probable, L., 1847 (перепечатка, L., 1926); Boole G., The mathematical analysis of logic, being an essay toward a calculus of deductive reasoning, L. — Camb., 1847 (перепечатка, N. Y., 1965); Schröder Е., Der Operationskreis des Logikkalkuls, Lpz., 1877; Frege G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle, 1879; Джевонс С., Основы науки, Трактат о логике и научном методе, пер. с англ., СПБ, 1881; Порецкий П. С., О способах решения логических равенств и об обратном способе математической логики, Казань, 1884; Whitehead A. N., Russell B., Principia mathematica, 2 ed., v. 1—3, Camb., 1925—27.
История. Владиславлев М., Логика, СПБ, 1872 (см. «Приложение»); Троицкий М., Учебник логики с подробным указанием на историю и современное состояние этой науки в России и в других странах, т. 1—3, М., 1885—88; Яновская С. А., Основания математики и математическая логика, в кн.: Математика в СССР за тридцать лет, М. — Л., 1948; её же, Математическая логика и основания математики, в кн.: Математика в СССР за сорок лет, т. 1, М., 1959; Попов П. С., История логики нового времени, М., 1960; Котарбиньский Т., Лекции по истории логики, Избр. произв., пер. с польск., М., 1963, с. 353—606; Стяжкин Н. И., Формирование математической логики, М., 1967; Prantl К., Geschichte der Logik im Abendlande, Bd 1—4, Lpz., 1855—70; Bochenski I. М., Formale Logik, Münch., 1956; Minio Paluello L., Twelfth century logic. Texts and Studies, v. 1—2, Roma, 1956—58; Scholz Н., Abriss der Geschichte der Logik, Freiburg — Münch., 1959; Lewis C. I., A survey of symbolic logic, N. Y., 1960; lørgensen J., A treatise of formal logic: Its evolution and main branches with its relation to mathematics and philosophy, v. 1—3, N. Y., 1962; Kneale W., Kneale М., The development of logic, 2 ed., Oxf., 1964; Dumitriu A., Istoria logicii, Buc., 1969; Blanché R., La logique et son histoire. D'Aristote a Russell, P., 1971; Berka K., Kreiser L., Logik — Texte. Kommentierte Auswahl zur Geschichte der modernen Logik, B., 1971.
Учебные курсы. Гильберт Д., Аккерман В., Основы теоретической логики, пер. с нем., М., 1947; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Новиков П. С., Элементы математической логики, М., 1959; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960; Гудстейн Р. Л., Математическая логика, пер. с англ., М., 1961; Гжегорчик А., Популярная логика. Общедоступный очерк логики предложений, пер. с польск., М., 1965; Мендельсон Э., Введение в математическую логику, пер. с англ., М., 1971; Марков А. А., О логике конструктивной математики, М., 1972.
Некоторые монографии. Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; Рейтинг А., Интуиционизм, пер. с англ., М., 1965; Карри Х. Б., Основания математической логики, пер. с англ., М., 1969; Hilbert D., Bernays P., Grundlagen der Mathematik, Bd 1—2, В., 1934—39; Markov A. A., Essai de construction d'une logique de la mathématique constructive, Brux., 1971.
Энциклопедии и словари. Философская энциклопедия, т. 1—5, М., 1960—70; Кондаков Н. И., Логический словарь, М., 1971; Encyclopedia of Philosophy. v. 1—8, N. Y., 1967; Mała encykiopedia Logiki, Wrocław — Warsz. — Krakόw, 1970.
Библиография. Примаковский А. П., Библиография по логике. Хронологический указатель произведений по вопросам логики, изданных на русском языке в СССР в 18—20 вв., М., 1955; Ивин А. А., Примаковский А. П., Зарубежная литература по проблемам логики (1960—1966), «Вопросы философии», 1968, № 2; Church A., A bibliography of symbolic logic, «The Journal of Symbolic Logic», 1936, v. 1, № 4; его же, Additions and corrections to «A bibliography of symbolic logic», там же, 1938, v. 3, № 4; Beth E. W., Symbolische Logik und Grundlegung der exakten Wissenschaften, Bern, 1948 (Bibliographische Einführung in das Studium der Philosophie, Bd 3); Brie G. A. de, Bibliographia Philosophica. 1934—1945, Bd 1—2, Brux., 1950—54; Küng G., Bibliography of soviet works in the field of mathematical logic and the foundations of mathematics, from 1917—1957, «Notre Dame Journal of Formal Locic», 1962, № 3; Hänggi J., Bibliographie der Sovjetischen Logik, Bd 2, Winterthur, 1971.
Логика высказываний
Ло'гика выска'зываний, раздел математической логики, посвященный изучению логических форм сложных высказываний, образованных из элементарных высказываний с помощью связок, аналогичных союзам «и», «или», «если..., то...», отрицания («не») и др.
Логика классов
Ло'гика кла'ссов, раздел логики, основным предметом рассмотрения в котором служат классы (множества) предметов, задаваемые характеризующими их свойствами, общими для всех входящих в данный класс элементов. В рамках современной формальной (математической) логики Л. к. может пониматься, с одной стороны, как такое усиление (расширение) логики высказываний, при котором «элементарные высказывания» уже не рассматриваются только как нерасчленяемое далее «целое», а каждое из них имеет субъектно-предикатную форму [т. e. может рассматриваться на содержательном уровне как нераспространённое повествовательное предложение, в котором различаются подлежащие (subjects) и сказуемые (predicates)]. Другая — отличающаяся от только что указанной по форме, но эквивалентная по существу, — трактовка Л. к. состоит в истолковании её как частного случая логики предикатов, а именно логики одноместных предикатов, точнее логики, оперирующей с объёмами понятий, содержания которых выражаются соответствующими одноместными предикатами. Имеется, наконец, ещё одна, изоморфная (см. Изоморфизм) первым двум, интерпретация Л. к., в соответствии с которой объектами её рассмотрения являются множества (классы) каких-либо предметов — вне зависимости от каких бы то ни было свойств, общих для их элементов, — и операции над множествами (см. Логические операции). Иными словами, Л. к. в этом случае можно отождествить с алгеброй множеств (см. Алгебра логики), в которой рассматриваются произвольные множества и обычные теоретико-множественные операции. Сопоставляя (взаимнооднозначно) множествам (классам) высказывания о принадлежности какого-либо предмета данному множеству, пересечению множеств — конъюнкцию соответствующих высказываний, объединению — дизъюнкцию, а дополнению — отрицание, получают упомянутый выше изоморфизм алгебры высказываний и алгебры множеств (Л. к.). Рассматривая реализацию Л. к. на одноэлементной области, сводят вопрос об истинности (ложности) формул Л. к. к соответствующим вопросам для логики высказываний, подобно которой Л. к. оказывается, т. о., разрешимой. Отсюда нетрудно получить и разрешимость логики одноместных предикатов; а поскольку, как было указано, она по существу совпадает с Л. к., последнюю не рассматривают обычно в виде специальной теории, трактуя её как фрагмент логики предикатов. См. ст. Логика и литературу при ней.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ЛО)"
Книги похожие на "Большая Советская Энциклопедия (ЛО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЛО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ЛО)", комментарии и мнения людей о произведении.




























