» » » » БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)
Рейтинг:
Название:
Большая Советская Энциклопедия (МЕ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (МЕ)"

Описание и краткое содержание "Большая Советская Энциклопедия (МЕ)" читать бесплатно онлайн.








  Взаимодействие М. с электромагнитными полями. Переменный электрический ток при достаточно высокой частоте течёт по поверхности М., не проникая в его толщу (см. Скин-эффект ). Электромагнитное поле частоты w проникает в М. лишь на глубину скин-слоя толщиной d.

  Например, для Cu при (w = 108 гц d = 6×10-4 см. В таком слое поглощается незначительная часть электромагнитной энергии. Основная часть энергии переизлучается электронами проводимости и отражается (см. Металлооптика ). В чистых М. при низких температурах длина свободного пробега электронов l часто превышает глубину d. При этом напряжённость поля существенно изменяется на длине свободного пробега, что проявляется в характере отражения электромагнитных волн от поверхности М. (аномальный скин-эффект).

  Сильное постоянное магнитное поле существенно влияет на электродинамические свойства М. В М., помещенных в такое поле, при условии, если частота электромагнитного поля кратна частоте прецессии электронов проводимости вокруг силовых линий постоянного магнитного поля, наблюдаются резонансные явления (см. Циклотронный резонанс ). При определённых условиях в толще М., находящегося в постоянном магнитном поле, могут распространяться слабо затухающие электромагнитные волны, т. е. исчезает скин-эффект. Электродинамические свойства М., помещенного в магнитное поле, сходны со свойствами плазмы в магнитном поле и являются одним из основных источников информации об электронах проводимости.

  Для электромагнитных волн оптического диапазона М., как правило, практически непрозрачны и обладают характерным блеском (см. Отражение света , Зеркало ). В поглощении света в видимом и ультрафиолетовом диапазонах некоторую роль играет внутренний фотоэффект . Отражение от поверхности М. плоскополяризованного света, падающего под произвольным углом, сопровождается поворотом плоскости поляризации и появлением эллиптической поляризации (см. Вращение плоскости поляризации ). Это явление используется для определения оптических констант М.

  Общая структура характеристических рентгеновских спектров М. и диэлектриков одинакова. Тонкая же структура линий, соответствующая квантовым переходам электронов из зоны проводимости на глубокие уровни, отражает распределение электронов проводимости по уровням энергии.

  Магнитные свойства. Переходные металлы с недостроенными f- и d- электронными оболочками являются парамагнетиками . Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние (см. Магнетизм , Ферромагнетизм , Антиферромагнетизм , Кюри точка ). Магнитное упорядочение существенно влияет на все свойства М., в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.

  Магнитные свойства остальных М. определяются электронами проводимости, которые вносят вклад в диамагнитную и парамагнитную восприимчивости М., и диамагнитной восприимчивостью ионного состава (см. Диамагнетизм , Парамагнетизм ). Магнитная восприимчивость c большинства М. относительно мала (c ~ 10-6 ) и слабо зависит от температуры.

  При низких температурах Т и в больших магнитных полях Н ³ 104 kT у всех металлических монокристаллов наблюдается сложная осциллирующая зависимость суммарного магнитного момента от поля Н (см. Де Хааза — ван Альфена эффект ), природа которого та же, что и у эффекта Шубникова — де Хааза. Исследование осцилляционных эффектов позволяет определить форму поверхности Ферми.

  Механические свойства. Многие М. обладают комплексом механических свойств, обеспечивающим их широкое применение в технике, в частности в качестве конструкционных материалов . Это, в первую очередь, сочетание высокой пластичности со значительной прочностью и сопротивлением деформации, причём соотношение этих свойств может регулироваться в большом диапазоне с помощью механической и термической обработки М., а также получением сплавов различного состава.

  Исходной характеристикой механических свойств М. является модуль упругости G, определяющий сопротивление кристаллической решётки упругому деформированию и непосредственно отражающий величину сил связи в кристалле. В монокристаллах эта величина, как и остальные механические характеристики, анизотропна и коррелирует с температурой плавления М. (например, средний модуль сдвига G изменяется от 0,18×1011 эрг/см3 для легкоплавкого Na до 27×1011 эрг/см3 для тугоплавкого Re).

  Сопротивление разрушению или пластической деформации идеального кристалла ~ 10-1 G. Но в реальных кристаллах эти характеристики, как и все механические свойства, определяются наличием дефектов, в первую очередь дислокаций. Перемещение дислокаций по плотноупакованным плоскостям приводит к элементарному акту скольжения — основному механизму пластической деформации М. Др. механизмы двойникование и сбросообразование) существенны только при пониженных температурах. Важнейшая особенность М. — малое сопротивление скольжению дислокации в бездефектном кристалле. Это сопротивление особенно мало в кристаллах с чисто металлической связью, которые обычно имеют плотноупакованные структуры (гранецентрированную кубическую или гексагональную). В М. с ковалентной компонентой межатомной связью, имеющих объёмноцентрированную решётку, сопротивление скольжению несколько больше, однако всё же мало по сравнению с чисто ковалентными кристаллами. Сопротивление пластической деформации, по крайней мере в М. с гранецентрированной кубической и гексагональной решётками, связано с взаимодействием движущихся дислокаций с др. дефектами в кристаллах, с др. дислокациями, примесными атомами, внутренними поверхностями раздела. Взаимодействие дефектов определяется искажениями решётки вблизи них и пропорционально G. Для отожжённых монокристаллов начальное сопротивление пластической деформации (предел текучести) обычно ~ 10-3 —10-4 G. В процессе деформации число дислокаций в кристаллической решётке (плотность дислокаций b) увеличивается от 106 —108 до 1012 см-2 . Соответственно растет сопротивление пластической деформации (d — межатомное расстояние). Это называют деформационным упрочнением или наклёпом. Для монокристаллов М. характерно наличие трёх стадий деформационного упрочнения. На 1-й стадии значительная часть дислокаций выходит на поверхность и коэффициент упрочнения Q (коэффициент пропорциональности между напряжением и деформацией) мал; на 2-й стадии дислокации накапливаются в кристалле, их распределение становится существенно неоднородным: Q~G/300. На 3-й стадии b, G и Q уменьшаются вследствие аннигилляции дислокаций, выдавливаемых из их плоскостей скольжения. Значение этой стадии больше для М. с объёмноцентрированной решёткой.

  Степень «привязанности» дислокации к плоскости скольжения определяется шириной дислокации в этой плоскости, которая, в свою очередь, зависит от энергии g дефекта упаковки (величина g/Gd в М. с гранецентрированной решёткой изменяется от 10-2 для Al, имеющего узкие дислокации, до 10-4 для сплавов Cu с широкими дислокациями). Процесс разрядки дислокационной плотности ускоряется при повышении температуры и может привести к релаксации и значительному восстановлению свойств кристаллов. Чем выше температура и меньше скорость деформирования, тем больше успевают развиться процессы релаксации и тем меньше деформационное упрочнение.

  При Т > 0,5 Тпл в пластической деформации начинают играть существенную роль точечные дефекты, в первую очередь вакансии, которые, оседая на дислокациях, приводят к их выходу из плоскостей скольжения. Если этот процесс достаточно интенсивен, то деформация не сопровождается упрочнением: М. течёт с постоянной скоростью при неизменной нагрузке (ползучесть ). Протекание процессов релаксации напряжений и постоянная разрядка дислокационной структуры обеспечивают высокую пластичность М. при их горячей обработке, что позволяет придавать изделиям из М. разнообразную форму. Отжиг сильно деформированных монокристаллов М. нередко приводит к образованию поликристаллов с малой плотностью дислокаций внутри зёрен (рекристаллизация).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (МЕ)"

Книги похожие на "Большая Советская Энциклопедия (МЕ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (МЕ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (МЕ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.