» » » » БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)
Рейтинг:
Название:
Большая Советская Энциклопедия (НЕ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (НЕ)"

Описание и краткое содержание "Большая Советская Энциклопедия (НЕ)" читать бесплатно онлайн.








  Соч.: Твори. [Вступ. ст. О. I. Бiлецького], т. 1—4, К., 1956; Зiбрання творiв, [Вступ. ст. Н. Є. Крутiковой], т. 1—8, К., 1965—67; в рус. пер. — Избр. произведения, т. 1—2, М., 1956.

  Лит.: Франко I., Лiтература, iï завдання i найважнiшi цiхи, Твори, т. 16, К., 1955; его же, «Микола Джеря», повiсть Iвана Нечуя, там же, т. 17, К., 1955; Крутiкова Н. Є., Творчiсть I. С. Нечуя-Левицького. [Статтi та матерiали], К., 1961; Походзiло М. У., Iван Нечуй-Левицький, К., 1960.

  С. П. Князева.

И. С. Нечуй-Левицкий. «Микола Джеря» (Киев, 1959). Илл. В. В. Полтавца.

И. С. Нечуй-Левицкий.

Нешавские статуты 1454

Неша'вские стату'ты 1454, Нешавские привилеи, привилегии, полученные шляхтой от польского короля Казимира IV под г. Нешава (Nieszawa); были выданы в отдельности для Малой Польши, Великой Польши, земель Серадзской, Хелминьской, Саноцкой и Перемышльской (в основу легли привилегии, данные великопольской шляхте в сентябре 1454 в лагере под Церквицей). Были получены в разгар войны Польши с Тевтонским орденом за поддержку, которую шляхта оказала королю в войне и в его борьбе с магнатами. Отменяли исключительное право магнатов замещать высшие государственные должности, регулировали судопроизводство и местное управление (находившиеся в руках магнатов) в пользу шляхты. Одновременно Н. с. означали и серьёзное ограничение королевской власти. Издание законов, решение вопросов войны и мира могли, согласно Н. с., осуществляться только с согласия шляхетских сеймиков; шляхта освобождалась от суда королевских чиновников (за исключением особых случаев). Н. с. частично ограничивали права городов (в малопольской редакции был пункт, распространявший юрисдикцию шляхетского суда на города). Явились важной вехой в формировании польской шляхетской «республики».

  Лит.: Historia państwa i prawa Polski, 2 wyd., t. 1, Warsz., 1965.

Нештатные работники

Нешта'тные рабо'тники, см. Работники нештатные .

Нея (город в Костромской обл.)

Не'я, город (до 1958 — посёлок) областного подчинения, центр Нейского района Костромской области РСФСР. Расположен на правом берегу р. Нея (приток р. Унжа). Ж.-д. станция на линии Буй — Котельнич. Крупный центр лесопильно-деревообрабатывающей промышленности (лесозавод, завод «Музлесдрев», леспромхоз). Авторемонтный, маслосыродельный заводы, льнозавод, швейная фабрика.

Нея (река в Костромской обл.)

Не'я, река в Костромской области РСФСР, правый приток р. Унжа (бассейн Волги). Длина 253 км, площадь бассейна 6060 км2 . Берёт начало на Галичской возвышенности. Питание смешанное, с преобладанием снегового. Средний расход воды в 38 км от устья 45,5 м3 /сек. Замерзает в ноябре, вскрывается в апреле. Сплавная. На реке — г. Нея.

Неявные функции

Нея'вные фу'нкции, функции, заданные соотношениями между независимыми переменными, не разрешенными относительно последних; эти соотношения являются одним из способов задания функции. Например, соотношение

  x2 + y2 - 1 = 0

задаёт Н. ф.

  y = у (х ),

соотношения

  x = rcosjsinJ, y = rsinjsinJ, z = rcosJ

задают Н. ф.:

  r = r(x , у, z ), j = j(x , y, z ), J = J(х, у, z ).

В простейших случаях соотношения, задающие Н. ф., могут быть разрешены в классе элементарных функций , т. е. удаётся найти элементарные функции, удовлетворяющие этим соотношениям. Так, в первом из приведённых выше примеров имеем:

а во втором:

  Вообще же таких элементарных функций найти не удаётся. Н. ф. могут быть как однозначными, так и многозначными. Не всякое соотношение (или система соотношений) между переменными задаёт Н. ф. Так, если ограничиваться лишь действительными значениями переменных, то соотношение x2 + y2 + 1 = 0 не задаёт Н. ф., так как не удовлетворяется ни одной парой действительных значений х и у; соотношение же exy = 0 вообще не удовлетворяется ни одной парой действительных или комплексных значений х и у. Теорема существования Н. ф. в её простейшей формулировке утверждает, что если функция F (x, y ) обращается в нуль при паре значений х = x0 , у = y0 [F (x0 , y0 ) ¹ 0] и дифференцируема в окрестности точки (x0 , y0 ), причём F’x (х, у ) и F’y (х, у ) непрерывны в этой окрестности и F’y (x0 , y0 ) ¹ 0, то в достаточно малой окрестности точки x 0 существует одна и только одна однозначная непрерывная функция у = у (х ), удовлетворяющая соотношению F (x, y ) = 0 и обращающаяся в y 0 при x = x 0 ; при этом y '(x ) = —F’x (x, y )/F’y (x, у ).

  Для приближённого вычисления значений Н. ф. вблизи точки x 0 , где её значение y 0 уже известно, широко применяются степенные ряды. Так, если F (x, у ) аналитическая функция [т. е. может быть разложена в окрестности точки (x 0 , y 0 ) в сходящийся двойной степенной ряд] и F’y (x0 , y 0 ) ¹ 0, то Н. ф., заданная соотношением F (x, y ) = 0, может быть получена в виде степенного ряда

сходящегося в некоторой окрестности точки х = х0 . Коэффициенты ck , k = 1, 2,..., могут быть найдены либо подстановкой этого ряда в соотношение F (x , у ) = 0, либо последовательным дифференцированием этого соотношения по х. Например, если Н. ф. задана соотношением

  y5 + xy - 1 = 0, x 0 = 0, y0 = 1,

то

и

откуда

c 0 = 1, c 1 = —1 /5 c 0 -3 , c 2 = —2c 1 2 c 0 -1 — 1 /5 c 1 c 0 -4 = —1 /25 и т.д.

  Если соотношение F (x, у ) = 0 может быть представлено в виде у = а + х j(у ), где j(y ) — аналитическая функция, то Н. ф. у = у (х ), заданная этим соотношением и принимающая значение а при х = 0, разлагается в ряд Лагранжа

сходящийся в некоторой окрестности точки х = 0. Например, из соотношения у = а + x siny (так называемое Кеплера уравнение ) можно получить:

  Вычисление значений Н. ф. в общем случае может быть произведено по методу последовательных приближений.

  Лит.: Смирнов В. И., Курс высшей математики, т. 1, 22 изд., М., 1967; т. 3, ч. 2, 8 изд., М., 1969; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970.

Неясыти

Нея'сыти (Strix), род птиц отряда сов. 12 видов. Распространены в Европе, Северной Африке, Азии и Америке. В СССР — 3 вида. Обыкновенная Н. (S. aluco) — длина тела 41—46 см, весит 0,45—0,68 кг; обитает в лесах и парках в средней полосе и на Ю. Русской равнины и Юго-Западной Сибири, на Кавказе горах Средней Азии. Уральская, или длиннохвостая, Н. (S. uralensis) — длина тела 50—58 см, весит 0,56—0,95 кг, и бородатая Н. (S. nebulosa) — длина тела около 65 см, весит 0,7—1,2 кг, населяют хвойные леса Русской равнины, Сибири и Дальнего Востока. Зимой совершают нерегулярные кочёвки. Гнездятся в дуплах, старых гнёздах сорок, ворон и др. птиц, иногда на земле. В кладке 3—4 белых яйца; насиживает самка около 1 месяца; птенцов кормят оба родителя. Питаются Н. главным образом мышевидными грызунами, реже птицами, лягушками, ящерицами или насекомыми.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (НЕ)"

Книги похожие на "Большая Советская Энциклопедия (НЕ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (НЕ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.