» » » » БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)
Рейтинг:
Название:
Большая Советская Энциклопедия (НЕ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (НЕ)"

Описание и краткое содержание "Большая Советская Энциклопедия (НЕ)" читать бесплатно онлайн.








  Лит.: Ленин В. И., Полн. собр. соч., 5 изд. (см. Справочный том..., ч. 1, с. 418); Geschichte der deutschen Arbeiterbewegung, Bd 2—3, В., 1966.

  Л. И. Гинцберг.

Независимость (в логике)

Незави'симость в логике, свойство предложения некоторой теории или формулы некоторого исчисления, заключающееся в том, что ни само это предложение, ни его отрицание не выводятся из данной системы предложений (например, какой-либо системы аксиом ) или соответственно из конъюнкции данных формул. Н. какого-либо предложения от данной системы аксиом может быть установлена посредством доказательств непротиворечивости двух систем аксиом, получаемых соответствующим присоединением данного предложения и его отрицания к рассматриваемой системе аксиом. С Н. связано также свойство дедуктивной полноты (см. Полнота в логике) аксиоматических теорий: если непротиворечивая система аксиом дедуктивно полна, то присоединение к ней в качестве аксиомы любого независимого от неё предложения данной теории приводит к противоречию. Когда речь идёт о Н. содержательно формулируемых предложений, «выводимость» понимается в интуитивном смысле, «в соответствии с законами логики»; при рассмотрении же формальных исчислений всегда фиксируются строго определённые правила вывода (по отношению к которым также можно ставить вопрос о Н.).

  Аналогично описанной выше «дедуктивной» Н. можно говорить о Н. «выразительной», называя понятие (термин) независимым от данной системы понятий (терминов), если оно не может быть определено лишь с их помощью (опять-таки, как и выше, здесь предполагается фиксация некоторой совокупности правил определения, относительно которых можно ставить проблему Н.). Термин «Н.» (в обоих упомянутых смыслах) применяется, наконец, и к совокупностям предложений (формул) или понятий (терминов): совокупность называется независимой (а также неизбыточной, или минимальной), если каждый из её членов независим от остальных в определённом выше смысле. Ряд важнейших результатов о Н. получен в аксиоматической теории множеств и в математической логике .

  Лит. см. при ст. Аксиоматический метод .

  Ю. А. Гастев.

Независимость (в теории вероятностей)

Незави'симость в теории вероятностей, одно из важнейших понятий этой теории. В качестве примера можно привести определение Н. двух случайных событий. Пусть А и В — два случайных события, а Р (А ) и Р (В ) — их вероятности. Условную вероятность Р (В|А ) события В при условии осуществления события А определяют формулой:

где Р (А и В ) — вероятность совместного осуществления событий А и В. Событие В называется независимым от события А, если

Р (В|А ) = Р (В ). (*)

  Равенство (*) может быть записано в виде, симметричном относительно А и В:

Р (А и В ) = Р (А ) Р (В ),

откуда видно, что если событие В не зависит от А, то и А не зависит от В. Т. о., можно говорить просто о Н. двух событий. Конкретный смысл данного определения Н. можно пояснить следующим образом. Известно, что вероятность события находит своё выражение в частоте его появления. Поэтому если производится большое число N испытаний, то между частотой появления события В во всех N испытаниях и частотой его появления в тех испытаниях, в которых наступает событие, должно иметь место приближённое равенство. Н. событий указывает, т. о., либо на отсутствие связи между наступлением этих событий, либо на несущественный характер этой связи. Так, событие, заключающееся в том, что наудачу выбранное лицо имеет фамилию, начинающуюся, например, с буквы «А», и событие, заключающееся в том, что этому лицу достанется выигрыш в очередном тираже лотереи, — независимы.

  При определении Н. нескольких (более двух) событий различают попарную и взаимную Н. События A 1 , A 2 , ..., A n называются попарно независимыми, если каждые два из них независимы в смысле данного выше определения, и взаимно независимыми, если вероятность наступления любого из них не зависит от наступления какой угодно комбинации остальных.

  Понятие «Н.» распространяется и на случайные величины . Случайные величины Х и Y называются независимыми, если для любых двух интервалов D1 и D2 события, заключающиеся в том, что значение Х принадлежит D1 , а значение Y — интервалу D2 , независимы. На гипотезе Н. тех или иных событий и случайных величин основаны важнейшие схемы теории вероятностей (см., например, Предельные теоремы теории вероятностей). О способах проверки гипотезы Н. каких-либо событий см. Статистическая проверка гипотез .

  Лит.: Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965; Феллер В., Введение в теорию вероятностей и ее приложения, пер. с англ., 2 изд., М., 1964.

Независимость судей

Незави'симость су'дей, один из демократических конституционных принципов социалистического правосудия, означающий, что при вынесении решения (приговора, определения, постановления) судьи не связаны никакими соображениями, посторонними правосудию, и обязаны руководствоваться только законом в соответствии с их социалистическим правосознанием (см., например, Конституция СССР, ст. 112).

  Организационное построение судебной системы социалистических государств исключает какое-либо влияние со стороны любого вышестоящего (судебного или иного) органа на существо решений или приговоров, выносимых судом по конкретным делам. В целях обеспечения организационной независимости суда законодательство социалистических государств предусматривает целый ряд гарантий, в том числе выборность судей и народных заседателей во всех звеньях судебной системы, право досрочного отзыва избирателями судей, не оправдавших их доверия, особый порядок судебной и дисциплинарной ответственности судей. Н. с. обеспечивается также правовыми гарантиями: непосредственность, непрерывность и устность судебного разбирательства , право отвода судьи, тайна совещательной комнаты , и др.

  При вынесении приговора или решения члены данного состава суда независимы друг от друга: это обеспечивается равенством прав всех членов суда (каждый судья может заявить своё особое мнение ).

  В буржуазных государствах положение суда в механизме государства теоретически базируется на принципе разделения властей (см. «Разделение властей» ), согласно которому в государстве якобы существуют три самостоятельные и независимые друг от друга власти: законодательная, исполнительная и судебная. Однако на деле в большинстве буржуазных государств судьи назначаются главой государства, они, как правило, несменяемы, что уже само по себе характеризует подчинённость буржуазного суда и самих судей интересам господствующих классов, определяет их зависимость от высших органов власти.

Незаконная охота

Незако'нная охо'та, по советскому уголовному праву охота без надлежащего разрешения в запрещенных местах либо в запрещенные сроки, запрещенными орудиями и способами. Н. о.

— вид браконьерства , к которому относятся также незаконное занятие рыбным и др. водными добывающими промыслами, незаконный промысел котиков и бобров. Уголовная ответственность за Н. о. наступает, как правило, после применения мер административного воздействия за такое же нарушение. Независимо от административного взыскания считается уголовным преступлением охота на зверей и птиц, добыча которых полностью запрещена.

Незаращение нёба

Незараще'ние нёба, врождённый порок развития человека, при котором в результате образования расщелины между правой и левой половинами твёрдого нёба нарушаются акты питания, дыхания и речи. Составляет до 30% всех пороков развития; часто встречается совместно с заячьей губой . Возникновение Н. и. связано с нарушением хода развития зародыша в периоде 6—12 нед, когда происходит формирование нёба. На развитие Н. н. оказывают влияние неблагоприятные внешние условия, физические и психические травмы матери, недостаточное питание, перенесённые во время беременности заболевания, токсоплазмоз. Влияние наследственности не доказано. Надёжный способ устранения Н. н. и связанных с ним функциональных расстройств — радикальная пластическая операция в сочетании с ортопедическим и логопедическим пред- и послеоперационным лечением. Профилактика: рациональный режим труда и быта беременной, полноценное питание, предохранение от инфекционных заболеваний.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (НЕ)"

Книги похожие на "Большая Советская Энциклопедия (НЕ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (НЕ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.