БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (НЕ)"
Описание и краткое содержание "Большая Советская Энциклопедия (НЕ)" читать бесплатно онлайн.
В 1965 были созданы параметрические генераторы света, в которых нелинейные оптические эффекты используются для генерирования когерентного оптического излучения, плавно перестраиваемого по частоте в широком диапазоне длин волн. В 1967 началось исследование нелинейных явлений, связанных с распространением в среде сверхкоротких (длительностью до 10-12 сек ) световых импульсов. С 1969 развиваются также методы нелинейной и активной спектроскопии, использующие нелинейные оптические явления для улучшения разрешающей способности и повышения чувствительности спектроскопических методов исследования вещества.
Взаимодействие сильного светового поля со средой. Элементарный процесс, лежащий в основе взаимодействия света со средой, — возбуждение атома или молекулы световым полем и переизлучение света возбуждённой частицей. Математическим описанием этих процессов являются уравнения, связывающие поляризацию P единицы объёма среды с напряжённостью поля Е (материальные уравнения). Линейная оптика базируется на линейных материальных уравнениях, которые для гармонической волны приводят к соотношению:
P = kE , (1)
где k — диэлектрическая восприимчивость , зависящая только от свойств среды. На соотношении (1) базируется важнейший принцип линейной оптики — суперпозиции принцип . Однако теория, основанная на (1), не способна объяснить ни один из перечисленных выше нелинейных эффектов. Согласно (1), переизлученное поле имеет ту же частоту, что и падающее, следовательно, уравнение (1) не описывает возникновения оптических гармоник; из (1) следует независимость показателя преломления среды от интенсивности. Сказанное означает, что материальное уравнение (1) является приближённым: фактически им можно пользоваться лишь в области слабых световых полей.
Суть приближений, лежащих в основе (1), можно понять, обращаясь к классической модели осциллятора, широко используемой в оптике для описания взаимодействия света с веществом. В соответствии с этой моделью, поведение атома или молекулы в световом поле эквивалентно колебаниям осциллятора. Характер отклика такого элементарного атомного осциллятора на световую волну можно установить, сравнивая напряжённость поля световой волны с напряжённостью внутриатомного поля Ea @ е/а2 @ 106 — 109 в/см (е — заряд электрона, а — атомный радиус), определяющего силы связи в атомном осцилляторе. В пучках нелазерных источников Е @ 1—10 в/см, т. е. Е << Ea , и атомный осциллятор можно считать гармоническим (возвращающая сила линейно связана со смещением). Прямым следствием этого является уравнение (1). В пучках мощных лазеров Е ~ 106 —107 в/см и атомный осциллятор становится ангармоническим, нелинейным (возвращающая сила — нелинейная функция смещения). Ангармоничность атомного осциллятора приводит к тому, что зависимость между поляризацией P и полем Е становится нелинейной; при (Е/Еа ) < 1 её можно представить в виде разложения в ряд по параметру Е/Еа :
P = cE + cE 2 + JE 3 + …. (2)
Коэффициенты c, J и т.д. называются нелинейными восприимчивостями (по порядку величины c ~ 1/Еa ; J ~ 1/Ea 2 ). Материальное уравнение (2) является основой Н. о. Если на поверхность среды падает монохроматическая световая волна Е = А cos (wt — kx ), где А — амплитуда, w — частота, k — волновое число , х — координата точки вдоль направления распространения волны, t — время, то, согласно (2), поляризация среды наряду с линейным членом P (л) = cA cos (wt — kx ) (линейная поляризация) содержит еще и нелинейный член второго порядка:
Последнее слагаемое в (3) описывает поляризацию, изменяющуюся с частотой 2w, т. е. генерацию 2-й гармоники. Генерация 3-й гармоники, а также зависимость показателя преломления от интенсивности описываются членом JE3 в (2) и т.д.
Нелинейный отклик атомного осциллятора на сильное световое поле — наиболее универсальная причина нелинейных оптических эффектов. Существуют, однако, и др. причины: например, изменение показателя преломления n может быть вызвано нагревом среды лазерным излучением . Изменение температуры DT = aE2 (a — коэффициент поглощения света) приводит к тому, что
Во многих случаях существенным оказывается также эффект электрострикции (сжатие среды в световом поле Е ). В сильном световом поле Е лазера электрострикционное давление, пропорциональное E2 , изменяет плотность среды, что может привести к генерации звуковых волн. С тепловыми эффектами и электрострикцией иногда связана самофокусировка света.
Оптические гармоники . На рис. 1 показано, как интенсивное монохроматическое излучение лазера на неодимовом стекле (l1 = 1,06 мкм ), проходя через оптически прозрачный кристалл ниобата бария, преобразуется в излучение с длиной волны ровно вдвое меньшей, т. е. во 2-ю гармонику (l2 = 0,53 мкм ). При некоторых условиях во 2-ю гармонику переходит более 60% энергии падающего излучения. Удвоение частоты наблюдается для излучения др. лазеров видимого и инфракрасного диапазонов. В ряде кристаллов и жидкостей зарегистрировано утроение частоты света — 3-я гармоника. Более сложные эффекты возникают, если в среде распространяются две или несколько интенсивных волн с различающимися частотами, например w1 и w2 . Тогда наряду с гармониками каждой из волн (2w1 , 2w2 и т.п.) возникают волны комбинационных частот (w1 + w2 ; w1 — w2 и т.п.).
Описанное явление, называется генерацией оптических гармоник, имеет много общего с широко известным умножением частоты в нелинейных элементах радиоустройств. Вместе с тем есть и существенное различие: в оптике эти эффекты являются результатом взаимодействия не колебаний, а волн. В сильном световом поле, согласно (2), каждый атомный осциллятор переизлучает не только на частоте падающей волны, но и на её гармониках. Однако так как свет распространяется в среде, размеры L которой существенно превышают длину волны l (для видимого света l~ 10-4 см ), суммарный эффект генерации гармоник на выходе зависит от фазовых соотношений между основной волной и гармониками внутри среды; возникает своеобразная интерференция, способная либо усилить, либо ослабить эффект. Оказалось, что взаимодействие двух волн, различающихся частотами, например w и 2w, максимально, а, следовательно, максимальна и перекачка энергии от основной волны к гармоникам, если их фазовые скорости равны (условие фазового синхронизма). К условиям фазового синхронизма можно прийти и из квантовых соображений, они соответствуют закону сохранения импульса при слиянии или распаде фотонов. Для трёх волн условия синхронизма: k 3 = k 1 + k 2 , где k 1 , k 2 и k 3 — импульсы фотонов (в единицах Планка постоянной ).
Условия синхронизма основной волны и гармоник в реальной диспергирующей среде на первый взгляд кажутся неосуществимыми. Равенство фазовых скоростей волн на разных частотах имеет место лишь в среде без дисперсии. Однако оказалось, что отсутствие дисперсии можно имитировать, используя взаимодействие волн разной поляризации в анизотропной среде (рис. 1 ). Этот метод резко повысил эффективность нелинейных волновых взаимодействий. Если в 1961 кпд оптических удвоителей частоты составлял ~10-10 —10-12 , то в 1963 он достиг значения 0,2—0,3, а к 1973 приблизился к 0,8.
Оптические умножители частоты позволили существенно расширить область применения лазеров. Эффект генерации оптических гармоник широко используется для преобразования излучения длинноволновых лазеров в излучение коротковолновых диапазонов. Промышленность многих стран выпускает оптические умножители частоты на неодимовом стекле или на алюмоиттриевом гранате с примесью неодима (l = 1,06 мкм ), позволяющие получить мощное когерентное излучение на волнах l = 0,53 мкм (2-я гармоника), l = 0,35 мкм (3-я гармоника) и l = 0,26 мкм (4-я гармоника). Для этой цели были подобраны кристаллы, обладающие высокой нелинейностью (большими значениями c) и позволяющие удовлетворить условиям фазового синхронизма. Иллюстрациями современных возможностей в этой области являются генератор 5-й оптической гармоники (рис. 2 ) и получение 9-й гармоники излучения неодимового лазера (l9 = 1189 ). В 1972 было экспериментально осуществлено умножение частоты в области вакуумного ультрафиолета; в качестве нелинейной среды здесь использовались некоторые газы и пары металлов.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (НЕ)"
Книги похожие на "Большая Советская Энциклопедия (НЕ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (НЕ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (НЕ)", комментарии и мнения людей о произведении.