» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ОП)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ОП)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ОП)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ОП)
Рейтинг:
Название:
Большая Советская Энциклопедия (ОП)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ОП)"

Описание и краткое содержание "Большая Советская Энциклопедия (ОП)" читать бесплатно онлайн.








  Второй важный шаг состоял в понимании законов преломления света (диоптрика ) и был сделан лишь много веков спустя. Диоптрические опыты описывались Евклидом и Клеомедом (1 в. н. э.), о применении стеклянных шаров как зажигательных линз упоминали Аристофан (около 400 до н. э.) и Плиний Старший (1 в. н. э.), а обширные сведения о преломлении были изложены Птолемеем (130 н. э.); важность этого вопроса тогда состояла главным образом в его непосредственной связи с точностью астрономических наблюдений. Однако законы преломления не удалось установить ни Птолемею, ни арабскому учёному Ибн аль-Хайсаму, написавшему в 11 в. знаменитый трактат по О., ни даже Г. Галилею и И. Кеплеру . Вместе с тем в средние века уже хорошо были известны эмпирические правила построения изображений, даваемых линзами, и начало развиваться искусство изготовления линз. В 13 в. появились очки . По некоторым данным, около 1590 З. Янсен (Нидерланды) построил первый двухлинзовый микроскоп . Первые же наблюдения с помощью телескопа , изобретённого Галилеем в 1609, принесли ряд замечательных астрономических открытий. Однако точные законы преломления света были экспериментально установлены лишь около 1620 В. Снеллиусом (см. Снелля закон преломления ) и Р. Декартом , изложившим их в «Диоптрике» (1637). Этим (и последующей формулировкой Ферма принципа ) был завершен фундамент построения и практического использования геометрической О.

  Дальнейшее развитие О. связано с открытиями дифракции и интерференции света (Ф. Гримальди ; публикация 1665) и двойного лучепреломления (датский учёный Э. Бартолин, 1669), не поддающихся истолкованию в рамках геометрической О., и с именами И. Ньютона , Р. Гука и Х. Гюйгенса . Ньютон обращал большое внимание на периодичность световых явлений и допускал возможность волновой их интерпретации, но отдавал предпочтение корпускулярной концепции света, считая его потоком частиц, действующих на эфир (этот термин для обозначения наделённой механическими свойствами среды — переносчика света ввёл Декарт) и вызывающих в нём колебания. Движением световых частиц через эфир переменной (вследствие колебаний) плотности и их взаимодействием с материальными телами, по Ньютону, обусловлены преломление и отражение света, цвета тонких плёнок, дифракция света и его дисперсия (Ньютоном же впервые подробно изученная). Ньютон не считал возможным рассматривать свет как колебания самого эфира, т.к. в то время на этом пути не удавалось удовлетворительно объяснить прямолинейность световых лучей и поляризацию света (впервые осознанную именно Ньютоном, хотя и следовавшую из классических опытов Гюйгенса по двойному лучепреломлению). Согласно Ньютону, поляризация — «изначальное» свойство света, объясняемое определённой ориентацией световых частиц по отношению к образуемому ими лучу.

  Гюйгенс, следуя идеям Леонардо да Винчи и развивая работы Гримальди и Гука, исходил из аналогии между многими акустическими и оптическими явлениями. Он полагал, что световое возбуждение есть импульсы упругих колебаний эфира, распространяющиеся с большой, но конечной скоростью (Кеплер и Декарт считали скорость света бесконечной, Ньютон и Гук — конечной; впервые её величину экспериментально определил в 1676 О. Рёмер , см. Скорость света ). Наибольшим вкладом Гюйгенса в О., не потерявшим ценности до сих пор, является Гюйгенса — Френеля принцип , согласно которому каждая точка фронта волнового возбуждения может рассматриваться как источник вторичных (сферических) волн; огибающая (поверхность) вторичных волн представляет собой фронт реальной распространяющейся волны в последующие моменты времени. Опираясь на этот принцип, Гюйгенс дал волновое истолкование законов отражения и преломления. Из его теории следовало правильное выражение для показателя преломления: n 21 = u 1 /u2 (где u1 и u 2 — скорости света в 1-й и 2-й средах), в то время как у Ньютона (и Гука) получалось обратное (не соответствующее действительности) отношение u2 /u1 . Гюйгенс объяснил также двойное лучепреломление. Говоря о световых волнах, Гюйгенс не придавал им буквального смысла и не пользовался понятием длины волны. Он игнорировал явление дифракции, считая, что свет распространяется прямолинейно даже через сколь угодно малое отверстие, и не рассматривал поляризацию света. Не упоминает он и об описанных в 1675 Ньютона кольцах — интерференционном эффекте, прямо свидетельствовавшем о периодичности световых колебаний, а не об их импульсном, как он полагал, характере. Т. о., сформулировав фундаментальный принцип волновой О., Гюйгенс не разработал последовательную волновую теорию света, которая выдержала бы противопоставление воззрениям Ньютона. По этой причине и вследствие большого научного авторитета Ньютона корпускулярная «теория истечения» последнего (её приверженцы придали ей категоричность, не свойственную высказываниям самого Ньютона) сохраняла господствующее положение в О. до начала 19 в., хотя некоторые крупные учёные, например Л. Эйлер и М. В. Ломоносов , отдавали предпочтение волновым представлениям о природе света. Путь к победе волновой О. открыли работы Т. Юнга и О. Френеля . В 1801 Юнг сформулировал принцип интерференции, позволивший ему объяснить цвета тонких плёнок (см. Полосы равной толщины ) и послуживший основой для понимания всех интерференционных явлений. Опираясь на этот принцип, Френель по-новому истолковал принцип Гюйгенса и не только дал удовлетворительное волновое объяснение прямолинейности распространения света, но и объяснил многочисленные дифракционные явления. В опытах Френеля и Д. Араго было установлено, что волны, поляризованные перпендикулярно друг другу, не интерферируют; это дало основания Юнгу и (независимо) Френелю высказать существенно важную идею о поперечности световых колебаний, исходя из которой Френель построил волновую теорию кристаллооптических явлений. Т. о., все известные к тому времени оптические явления получили волновую интерпретацию. Однако и в этом «триумфальном шествии» были трудности, т.к. детальная разработка представлений о свете, как поперечных упругих колебаниях эфира, приводила к необходимости искусственных теоретических построений (так, эфир приходилось наделять свойствами твёрдого тела, в котором, тем не менее, могли свободно перемещаться тела). Эти трудности были радикально разрешены лишь при последовательном развитии учения Дж. К. Максвелла об электромагнитном поле. Максвелл, исходя из открытий М. Фарадея , пришёл к выводу, что свет представляет собой не упругие, а электромагнитные волны. Позже, в начале 20 в. выяснилось, что для их распространения не нужен эфир.

  Первым указанием на непосредственную связь электромагнетизма с О. было открытие Фарадеем (1846) вращения плоскости поляризации света в магнитном поле (Фарадея эффекта ). Далее было установлено, что отношение электромагнитной и электростатической единиц силы тока по абсолютной величине и размерности совпадает со скоростью света с (В. Вебер и Ф. Кольрауш , 1856). Максвелл теоретически показал, а Г. Герц в 1888 подтвердил экспериментально, что изменения электромагнитного поля распространяются в вакууме именно с этой скоростью. В прозрачный среде скорость света u = c/n = c/ , т. е. определяется диэлектрической и магнитной проницаемостями среды. Вначале не удавалось объяснить в рамках электромагнитной теории известные к тому времени зависимости показателя преломления n от длины волны l излучения, используя взятые из опыта значения e и m. Со времён Ньютона была известна нормальная дисперсия — возрастание n с уменьшением l. С позиций упругой волновой теории света она была объяснена Френелем и О. Коши . Но в 1862 французский физик Ф. Леру обнаружил участок дисперсионной кривой, на котором n увеличивался с ростом l. Впоследствии А. Кундт показал, что такая (аномальная) дисперсия свойственна очень многим веществам и связана с поглощением ими света. Возникло представление о веществе как совокупности упругих осцилляторов (резонаторов), с которыми взаимодействует свет (В. Зельмейер, 1872). Развивая эту идею и рассматривая влияние вынужденных колебаний осцилляторов под действием света на скорость его распространения, Г. Гельмгольц (1874) дал полную теорию дисперсии в рамках «упругой» теории света. В 90-х гг. 19 в. П. Друде , Гельмгольц и в особенности Х. Лоренц при построении электронной теории вещества объединили идею об осцилляторах и электромагнитную теорию света. Плодотворное представление об электронах, которые входят в состав атомов и молекул и способны совершать в них колебания, позволило описать многие оптические явления, в том числе нормальную и аномальную дисперсию, т.к. в электронной теории значение e зависит от частоты (длины волны) электромагнитного поля. Наиболее точные опыты по аномальной дисперсии (Д. С. Рождественский , 1912) дали результаты, хорошо согласующиеся с предсказаниями электронной теории. Блестящим подтверждением представлений о том, что излучение и поглощение света определяется поведением электронов в атомах, явилось открытие в 1896 П. Зееманом и истолкование в 1897 Лоренцем действия магнитного поля на частоты излучения и поглощения атомов (Зеемана эффекта ). В полном согласии с теорией Максвелла оказалась и величина давления света, мысль о котором впервые высказал в 1619 Кеплер для объяснения отклонения хвостов комет в сторону от Солнца. В земных условиях величина этого давления была впервые измерена П. Н. Лебедевым в 1899. Построение электромагнитной теории света и дополнение её электронной теорией взаимодействия света и вещества явилось следующим (после победы волновой теории в начале 19 в.) существенным шагом в развитии О.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ОП)"

Книги похожие на "Большая Советская Энциклопедия (ОП)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ОП)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ОП)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.