» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ПР)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ПР)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ПР)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ПР)
Рейтинг:
Название:
Большая Советская Энциклопедия (ПР)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ПР)"

Описание и краткое содержание "Большая Советская Энциклопедия (ПР)" читать бесплатно онлайн.








  Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения x(s ) при комплексных значениях s . Риман высказал гипотезу о том, что все корни уравнения x(s ) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1 /2 . Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой , с не решенной ещё проблемой «близнецов» и другими проблемами аналитической теории чисел. Проблема «близнецов» состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших «близнецов» (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 —1 есть П. ч.; в нём 3376 цифр].

  Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. — Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Простой производственный

Просто'й произво'дственный, временная приостановка работы по вине работника или по не зависящим от него причинам (поломка станка, отсутствие сырья, материалов, электроэнергии и т.д.).

  В СССР за время П. п. не по вине рабочего или служащего заработная плата выплачивается в размере 1 /2 тарифной ставки повременной оплаты труда работника соответствующей квалификации, а в металлургической, горнорудной и коксовой промышленности — в размере 2 /3 тарифной ставки (месячная заработная плата в этих случаях не может быть ниже установленного минимального размера). На период освоения новых производств П. п. не по вине работника (как на новых, так и на действующих предприятиях) оплачивается из расчёта тарифной ставки повременщика соответствующего разряда. В тех отраслях народного хозяйства, где для рабочих-сдельщиков и рабочих-повременщиков установлены единые тарифные ставки, размер оплаты за время П. и. не по вине работника определяется законодательством СССР. Время П. п. по вине работника оплате не подлежит.

  В случае П. п. рабочие и служащие переводятся (с учётом их специальности и квалификации) на другую работу на том же предприятии (в учреждении) на всё время П. п. либо на др. предприятие в той же местности на срок до 1 месяца. При переводе на нижеоплачиваемую работу вследствие П. п. за рабочими и служащими, выполняющими нормы выработки, сохраняется средний заработок по прежней работе, а за работниками, не выполняющими нормы или переведёнными на повременно оплачиваемую работу, сохраняется их тарифная ставка (оклад). Не допускается перевод квалифицированных рабочих и служащих на неквалифицированные работы.

Простой труд

Просто'й труд , труд работника, не имеющего квалификации , т. е. неквалифицированный труд. Всякий сложный труд может быть сведён к П. т., поскольку, по характеристике К. Маркса, «сравнительно сложный труд означает только возведенный в степень или, скорее, помноженный простой труд, так что меньшее количество сложного труда равняется большему количеству простого» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23, с. 53). Редукция (сведение) сложного труда к простому (см. Редукция труда ) позволяет определить стоимость товаров. В рабочем часе сложного труда заключено несколько часов П. т., поэтому квалифицированная рабочая сила (см. Квалифицированный труд ) создаёт в единицу времени большую стоимость, чем рабочая сила без квалификации.

  При капитализме сведение сложного труда к П. т. совершается стихийно, путём приравнивания (в процессе обмена) стоимостей товаров, созданных этими видами труда. В условиях социалистического общества происходит планомерное соизмерение затрат сложного труда и П. т. В процессе производства товаров сведение сложного труда к простому осуществляется на основе действия закона стоимости (см. Стоимости закон ).

  В. В. Мотылёв.

Простокваша

Простоква'ша, см. Молочнокислые продукты .

«Простор»

«Просто'р», литературно-художественный и общественно-политический иллюстрированный ежемесячный журнал. Орган СП Казахстана. Издаётся на русском языке в Алма-Ате с 1933 (до 1960 — под др. названиями). Журнал публикует художественные произведения, публицистику и очерки, критику, мемуары, материалы из литературного наследства. Тираж (1975) свыше 35 тыс. экз.

  Лит.: Фоменко Л., Есть в Казахстане журнал..., «Литературная Россия», 1964, 23 окт.; Кузнецов П., Творческий поиск, «Правда», 1965, 25 апр.

Просторечие

Просторе'чие, слова, выражения, формы словообразования и словоизменения, черты произношения, имеющие оттенок упрощения, сниженности, грубости («башка», «кишка тонка»; «бечь» вместо «бежать»; «вчерась» вместо «вчера»; «мо'лодежь» вместо «молодёжь» и др.). П. характеризуется яркой экспрессией, стилистической сниженностью, граничит с разговорными элементами литературной речи, а также с диалектизмами, арготизмами, вульгаризмами. Состав и границы П. исторически изменчивы. В западноевропейской лингвистике термином «П.» (английское popular language, немецкое Volkssprache) обозначают конгломерат отклонений от «стандартного» языка: сленгизмы (см. Сленг ), модные фразы, прозвища и т.п. Стилистическая окрашенность П. делает его средством экспрессии в художественных произведениях («литературное П.») и в общеупотребительном литературном языке.

  Лит.: Сорокин Ю. С., «Просторечие» как термин стилистики, в сборнике: Доклады и сообщения филологического института ЛГУ, в. 1, 1949; Хомяков В. А., Введение в изучение слэнга — основного компонента английского просторечия, Вологда, 1971 (есть лит.); Филин Ф. П., О структуре современного русского литературного языка, «Вопросы языкознания», 1973, № 2; Князькова Г. П., Русское просторечие второй половины XVIII в., Л., 1974; Partridge Е., A dictionary of slang and unconvenctional English, v. 1—2, L., 1970.

  В. Д. Бондалетов.

Простоя коэффициент

Просто'я коэффицие'нт, показатель надёжности ремонтируемых технических устройств, характеризующий среднюю долю времени простоя устройства (из-за отказов) по отношению к суммарному времени простоя и работы.

Пространственная группа

Простра'нственная гру'ппа симметрии, федоровская группа, совокупность преобразований симметрии, присущих атомной структуре кристаллов (кристаллической решётке ). Вывод всех 230 П. г. был осуществлен в 1890—91 русским кристаллографом Е. С. Федоровым и независимо от него немецким математиком А. Шёнфлисом. Преобразованиями (операциями) симметрии называются геометрические преобразования различных объектов (фигур, тел, функций), после которых объект совмещается сам с собою. Поскольку кристаллическая решётка обладает трёхмерной периодичностью, то для пространственной симметрии кристаллов характерной является операция совмещения решётки с собой путём параллельных переносов в 3 направлениях (трансляций ) на периоды (векторы) а , b , с , определяющие размеры элементарной ячейки . Другими возможными преобразованиями симметрии кристаллической структуры являются повороты вокруг осей симметрии на 180°, 120°, 90° и 60°; отражения в плоскостях симметрии; операция инверсии в центре симметрии, а также операции симметрии с переносами (винтовые повороты, скользящие отражения и некоторые др.). Операции пространственной симметрии могут комбинироваться по определённым правилам, устанавливаемым математической теорией групп, и сами составляют группу .

  П. г. не определяет конкретного расположения атомов в кристаллической решётке, но она даёт один из возможных законов симметрии их взаимного расположения. Этим обусловлена особая важность П. г. в изучении атомного строения кристаллов — любая из многих тысяч исследованных структур принадлежит к какой-либо одной из 230 П. г. Определение П. г. производится рентгенографически (см. Рентгеновский структурный анализ ). СП. г. не следует смешивать точечную группу (класс) симметрии кристаллов — совокупность преобразований симметрии, при которых одна точка кристалла остаётся неподвижной (трансляции отсутствуют). Точечная группа характеризует симметрию внешней формы кристаллов и анизотропию их свойств. Все 230 П. г. табулированы в специальных справочниках.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ПР)"

Книги похожие на "Большая Советская Энциклопедия (ПР)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ПР)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ПР)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.