» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ПР)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ПР)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ПР)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ПР)
Рейтинг:
Название:
Большая Советская Энциклопедия (ПР)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ПР)"

Описание и краткое содержание "Большая Советская Энциклопедия (ПР)" читать бесплатно онлайн.








  Одним из первых результатов о полиномиальной аппроксимации является теорема Рунге, согласно которой любая функция, голоморфная в односвязной области плоскости комплексного переменного z, может быть равномерно аппроксимирована на компактных подмножествах (см. Компактность ) этой области посредством полиномов от z. Общая задача о возможности равномерного приближения полиномами ставится так: для каких компактов К в комплексной плоскости любая функция f, непрерывная на К и голоморфная на множестве внутренних точек К, допускает равномерную аппроксимацию на К (с любой степенью точности) посредством полиномов от z. Необходимым и достаточным условием возможности такой аппроксимации является связность дополнения компакта К. Эта теорема для компактов без внутренних точек была доказана М. А. Лаврентьевым (1934), для замкнутых областей — М. В. Келдышем (1945) и в общем случае — С. Н. Мергеляном (1951).

  Пусть Еп = En (f, K ) наилучшее приближение функции f на компакте К посредством полиномов от z степени не выше n (в равномерной метрике). Если К — компакт со связным дополнением и функция f    голоморфна на К, то последовательность {Еп } стремится к нулю быстрее некоторой геометрической прогрессии: En < qn , 0 < q = q  < 1 (n > N ). Если f    непрерывна на К и голоморфна во внутренних точках К, то скорость её полиномиальной аппроксимации зависит как от свойств f    на границе К (модуль непрерывности, дифференцируемость), так и от геометрических свойств границы К.

  Другие направления исследований — равномерные и наилучшие приближения рациональными функциями, приближения целыми функциями, весовые приближения полиномами, приближения полиномами и рациональными функциями в интегральных метриках. Большое внимание уделяется проблематике, связанной с приближением функций нескольких комплексных переменных.

  Лит.: Уолш Д.-Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, пер. с англ., М,, 1961; Маркушевич А. И., Теория аналитических функций, т. 2, М., 1968; Смирнов В. И.. Лебедев Н. А., Конструктивная теория функций комплексного переменного, М. — Л., 1964; Мергелян С. Н., Приближения функций комплексного переменного. в кн.: Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 383-98; Гончар А. А., Мергелян С. Н., Теория приближений функций комплексного переменного, в кн.: История отечественной математики, т. 4, кн. 1, К,, 1970, с. 112—78.

  А. А. Гончар.

Приближённое интегрирование

Приближённое интегри'рование определённых интегралов, раздел вычислительной математики, занимающийся разработкой и применением методов приближённого вычисления определённых интегралов .

  Пусть y = f (x ) непрерывная функция на отрезке [a, b ] и интеграл

  Если для функции f (x ) известны значения первообразной F (x ) при x = а и х = b, то по формуле Ньютона — Лейбница

I (f ) = F (b ) - F (a )

  В противном случае приходится искать др. пути вычисления l . Одним из путей является построение квадратурных формул, приближённо выражающих значение I  в виде линейной функции некоторого числа значений функции f (x ) и её производных. Квадратурной формулой, содержащей только значения функции f (x ), называют выражение вида

Sn =  Ak f (xk ),

в котором точки xk , k = 1, 2,..., n, xk Î [a, b ], называют узлами, а коэффициенты Ak — весами.

  Для каждой непрерывной функции f (x ) значение I  может быть вычислено с помощью сумм Sn с любой точностью. Выбор квадратурной формулы определяется классом W, к которому относят конкретную функцию f (x ), способом задания функции и имеющимися вычислительными средствами. Погрешностью квадратурной формулы называется разность

Rn = I  - Sn .

  Квадратурная формула содержит 2n + 1 не зависящих от функции f (x ) параметров: n, xk , Ak (k = 1, 2,..., n ), которые выбирают так, чтобы при f Î W погрешность её была допустимо малой. Точность квадратурной формулы для f Î W характеризует величина rn (W) — точная верхняя грань &frac12;Rn &frac12; на множестве W:

.

  Пусть

  Квадратурная формула, для которой Wn (W) = rn (W), называется оптимальной на классе П. Веса и узлы в оптимальной квадратурной формуле могут быть произвольными или подчинёнными определённым связям.

  Различают два класса квадратурных формул: элементарные и составные. Разработано несколько методов построения элементарных квадратурных формул. Пусть wq (x ), q = 0, 1,..., — полная система функций в классе W, и любая f (x ) Î Q достаточно хорошо приближается линейными комбинациями первых функций wq (x ). Пусть l (wq ), q = 0, 1, 2,..., можно вычислить точно. Для каждого n параметры квадратурной формулы можно определить из требования, чтобы

I (wq ) = Sn (wq ), q = 0, 1,..., m,

для возможно большего значения m. В методе Ньютона — Котеса в квадратурной формуле выбираются узлы xk , а определению подлежат веса Ak . В методе Чебышева на веса Ak заранее накладываются некоторые связи [например, Ak = (b - а )/n ], а определению подлежат узлы xk . В методе Гаусса определяются и веса Ak и узлы xk . В методе Маркова j узлов (j < n ) считают заранее известными, а определяют веса и оставшиеся узлы. Точность полученных такими методами квадратурных формул существенно повышается при удачном выборе функций wq (x ).

  Формулы Ньютона — Котеса строятся на основе системы функций wq = xq , q = 0, 1,...; узлы xk разбивают отрезок интегрирования на равные части. Примерами таких формул являются прямоугольников формула , трапеций формула и Симпсона формула .

  Поскольку заменой переменной интегрирование по [а, b ] сводится к интегрированию по отрезку [-1, 1], то для определения весов и узлов элементарных формул на [а, b ] достаточно знать их для отрезка [-1, 1]. В случае составных формул исходный интеграл представляется в виде:

и для вычисления интегралов по отрезкам [ai , ai+1 ] применяются элементарные квадратурные формулы.

  В формулах Гаусса m = 2n — 1, а при а = 1, b = 1 узлы xk являются корнями Лежандра многочлена Pn (x ) степени n, а

Ak = 2(1 - x2 k )-1 (P’n (xk ))-2

  Квадратурная формула Чебышева существует при Ak = l/n, l = b - а и xk Î [a, b ] лишь для n = 1,..., 7, 9; в ней m = n - 1. Применение равных весов минимизирует вероятностную ошибку, если значения f (x ) содержат независимые случайные ошибки с одинаковой дисперсией.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ПР)"

Книги похожие на "Большая Советская Энциклопедия (ПР)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ПР)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ПР)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.