БСЭ БСЭ - Большая Советская Энциклопедия (СФ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (СФ)"
Описание и краткое содержание "Большая Советская Энциклопедия (СФ)" читать бесплатно онлайн.
при вращении сферы линейно преобразуется по формуле:
(1)
(q–1M — точка, в которую переходит точка М сферы при вращении q–1). Коэффициенты являются матричными элементами неприводимого унитарного представления веса l группы вращения сферы. Их называют также обобщёнными С. ф. Обобщённые С. ф. применяются при разложении векторных и тензорных полей на единичной сфере, решении некоторых задач теории упругости и т. д.
С формулой (1) связана теорема сложения для зональных С. ф.:
,
где cos g = cos q cos q‘ + sinq sinq' cos (j —j’), g — сферическое расстояние точки (q, j) от точки (q', j’).
Характерным примером многочисленных приложений С. ф. к вопросам математической физики и механики является применение их в теории потенциала. Пусть — поверхностная плотность распределения массы по сфере радиуса R с центром в начале координат; если а можно разложить в ряд С. ф. , сходящийся равномерно на поверхности сферы, то потенциал, соответствующий этому распределению масс, в каждой точке (r, q, j), внешней относительно данной сферы, равен
а в каждой точке, внутренней по отношению к сфере, равен
Общий член каждого из этих двух рядов представляет собой шаровую функцию соответственно степени n - 1 и n.
С. ф. были введены А. Лежандром и П. Лапласом в конце 18 в.
Лит.: Бейтмен Г., Эрдей и А., Высшие трансцендентные функции, пер. с англ., т. 1—2, М., 1973; Никифоров А. Ф., Уваров В. Б., Основы теории специальных функций, М., 1974; Гобсон Е. В., Теория сферических и эллипсоидальных функций, пер. с англ., М., 1952; Lense J., Kugelfunktionen, 2 Aufl., Lpz., 1954.
Сферический избыток
Сфери'ческий избы'ток, превышение суммы углов сферического треугольника сверх 180°, то есть сверх суммы углов прямолинейного треугольника на плоскости. Сумма углов треугольника, образованного тремя геодезическими линиями на поверхности с положительной кривизной, т. е. на выпуклой поверхности, всегда больше двух прямых и равна
где К — полная кривизна поверхности, а dS — элемент её площади. С. и. треугольника, образованного большими кругами на сфере (шаре) с радиусом R, равен
где S — площадь треугольника. Для небольших треугольников на поверхности земного шара с двумя сторонами a, b и углом С между ними величина e, выраженная в секундах дуги, равна
.
Сферический маятник
Сфери'ческий ма'ятник, материальная точка, движущаяся под действием силы тяжести по гладкой сферической поверхности, в частности по полусфере, обращенной выпуклостью вниз. См. Маятник.
Сферический треугольник
Сфери'ческий треуго'льник, геометрическая фигура, образованная дугами трёх больших кругов, соединяющих попарно три какие-нибудь точки на сфере. О свойствах С. т. и соотношениях между его элементами (углами и сторонами) см. в статьях Сферическая геометрия, Сферическая тригонометрия.
Сферическое отображение
Сфери'ческое отображе'ние поверхности S, непрерывное отображение S на сферу Р единичного радиуса, определяемое по параллельности касательных плоскостей в соответствующих точках поверхности и сферы (С. о. является также отображением по параллельности нормалей). Площадь s' сферического образа областей G поверхности S не меняется при изгибаниях S. Это обстоятельство позволяет рассматривать число s' как внутреннюю меру искривлённости области G (площадь s' рассматривается со знаком в зависимости от направления обхода её границы). Если существует предел К отношения s' к s (s — площадь G), когда область G стягивается к некоторой точке М на поверхности S, то он, очевидно, также не меняется при изгибаниях S и поэтому является внутренней характеристикой искривлённости S в точке М. Это число К называется полной, или гауссовой, кривизной поверхности S в точке М. С. о. поверхности играет важную роль в изучении свойств поверхностей.
Лит.: Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; Гильберт Д., Кон-Фоссен С., Наглядная геометрия, пер. с нем., 2 изд., М., 1951.
Сферическое поле
Сфери'ческое по'ле, центральное поле, понятие теории поля (см. Поля теория). Векторное поле а (Р) называется С. п., если существует такая точка О, что все векторы а (Р) лежат на прямых, проходящих через О, и их длина зависит только от расстояния r точки Р до точки О, то есть а (Р) = f (r) n, где n — единичный вектор прямой. Скалярное поле u (P) называется С. п., если существует такая точка О, что u (P) зависит только от расстояния r точки Р до точки О, то есть и (Р) = j(r). Примеры векторного С. п.: силовое поле, образованное точечным зарядом, поле ньютоновского тяготения материальной точки. Пример скалярного С. п. — поле распределения температуры в изотропном однородном теле при точечном источнике тепла.
Сферо...
Сфе'ро... (от греч. spháira — шар), первая часть некоторых сложных слов, имеющих отношение к шару или сфере как геометрическим образам.
Сфероид
Сферо'ид (от сфера и греч. éidos — вид), сплюснутый эллипсоид вращения малого сжатия; в более общем смысле — всякая поверхность, близкая к сфере. См., например, Земной сфероид.
Сфероидизация
Сфероидиза'ция в металловедении, процесс перехода кристаллов избыточной фазы в глобулярную (сферическую) форму, происходящий при относительно высоких температурах в связи с уменьшением межфазной поверхностной энергии. Особенно важное значение имеет С. пластинок цементита, входящего в состав перлита: при этом пластинчатый перлит превращается в зернистый, в результате чего значительно уменьшаются твёрдость и прочность, но повышается пластичность металла. С. осуществляется длительной выдержкой при температурах вблизи нижней критической точки или циклическим нагревом — охлаждением вблизи этих температур (см. Отжиг); процесс может быть ускорен предварительной деформацией или закалкой. Сфероидизирующий отжиг на зернистый перлит, особенно высокоуглеродистых шарикоподшипниковых и инструментальных сталей, служит для улучшения их обрабатываемости на металлорежущих станках, а также для подготовки структуры к закалке.
Лит.: Раузин Я. Р., Термическая обработка хромистой стали, 3 изд., М., 1963; Бунин К. П., Баранов А. А., Металлография, М., 1970.
Р. И. Энтин.
Сферолгиты
Сфероли'ты (от сферо... и греч. lithos — камень), небольшие шарики радиально-лучистого строения, представляющие собой агрегаты очень тонких игольчатых кристаллов. Встречаются в магматических и осадочных горных породах. Минеральный состав и величина С. разнообразны. С. в магматических породах рассматриваются большей частью как эндогенные контактовые образования в краевых участках диабазов. В кислых лавах С. могут возникать путём консолидации в основной стекловатой массе при её застывании. В основных лавах (вариолитах) подобные образования называются вариолями. С. формируются также в газовых пустотах уже твёрдой породы при вторичном выпадении цеолитов, кварца и т. п. минералов (так называемых псевдосферолиты). В осадочных породах встречаются С. карбонатные, марганцево-железистые, фосфатные, халцедоновые и т. п., образующиеся обычно при раскристаллизации вещества коллоидных стяжений. Многие из них по происхождению близки к конкреционным образованиям (см. Конкреции).
Сферосомы
Сферосо'мы (от сферо... и греч. sma — тело), гранулы в растительных клетках. Одни исследователи принимают их за скопление рибосом, другие — за участки эндоплазматической сети. На основании обнаружения в С. активности кислой фосфатазы и неспецифичный эстераз их отождествляют с лизосомами животных клеток, от которых они отличаются высоким содержанием липидов.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (СФ)"
Книги похожие на "Большая Советская Энциклопедия (СФ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (СФ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (СФ)", комментарии и мнения людей о произведении.