БСЭ БСЭ - Большая Советская Энциклопедия (СИ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (СИ)"
Описание и краткое содержание "Большая Советская Энциклопедия (СИ)" читать бесплатно онлайн.
У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.
В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные (s) и антисимметричные (p) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются p-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.
Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.
В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда — Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.
Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.
Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968; Болотин А. Б., Степанов Н. ф.. Теория групп и ее применения в квантовой механике молекул, М., 1973; Вудворд Р., Хоффман Р., Сохранение орбитальной симметрии, пер. с англ., М., 1971.
Н. Ф. Степанов.
Симметрия кристаллов
Симме'трия криста'ллов, свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.
На рис. 1, а изображен кристалл кварца. Внешняя его форма такова, что поворотом на 120° вокруг оси 3 он может быть совмещен сам с собой (совместимое равенство). Кристалл метасиликата натрия (рис. 1, б) преобразуется в себя отражением в плоскости симметрии m (зеркальное равенство). Т. о., симметрия означает возможность преобразования объекта совмещающего его с собой. Если F (x1, x2, x3) — функция, описывающая объект, например форму кристалла в трёхмерном пространстве или какое-либо его свойство, а операция g [x1, x2, x3] осуществляет преобразование координат всех точек объекта, то g является операцией или преобразованием симметрии, а F — симметричным объектом, если выполняются условия:
g [x1,. x2, x3] = (1, a)
F (x1, x2, x3) = F (x2, x2, x3). (1, б)
В наиболее общей формулировке симметрия — неизменность (инвариантность) объектов при некоторых преобразованиях описывающих их переменных. Кристаллы — объекты в трёхмерном пространстве, поэтому классическая теория С. к. — теория симметрических преобразований в себя трёхмерного пространства с учётом того, что внутренняя атомная структура кристаллов — трёхмерно-периодическая, т. е. описывается как кристаллическая решётка. При преобразованиях симметрии пространство не деформируется, а преобразуется как жёсткое целое (ортогональное, или изометрическое, преобразование). После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в др. месте. Это означает, что в симметричном объекте есть равные части (совместимые или зеркальные).
С. к. проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетического спектра электронов кристалла в импульсном пространстве (см. Твёрдое тело), при анализе процессов дифракции рентгеновских лучей в кристаллах с помощью пространства обратных длин и т. п.
Группа симметрии кристаллов. Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис. 1, а) совмещается с собой нс только при повороте на 120° вокруг оси 3 (операция g1), ной при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w (операции g3, g4 и g5). Каждой операции симметрии может быть сопоставлен геометрический образ — элемент симметрии — прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис. 1, б) — плоскостью зеркальной симметрии и т. п. Совокупность операций симметрии [g1,..., gn] данного кристалла образует группу симметрии G в смысле математической теории групп. Последовательное проведение двух операций симметрии также является операцией симметрии. Всегда существует операция идентичности g0, ничего не изменяющая в кристалле, называется отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, называется порядком группы.
Группы симметрии классифицируют: по числу n измерений пространства, в которых они определены; по числу т измерений пространства, в которых объект периодичен (их соответственно обозначают Gmn) и по некоторым другим признакам. Для описания кристаллов используют различные группы симметрии, из которых важнейшими являются пространственные группы симметрии G33, описывающие атомную структуру кристаллов, и точечные группы симметрии G03, описывающие их внешнюю форму. Последние называются также кристаллографическими классами.
Симметрия огранки кристаллов. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение, рис. 2, б), инверсия (симметрия относительно точки, рис. 2, в), инверсионные повороты (комбинация поворота на 360°/N с одновременной инверсией, рис. 2, г). Вместо инверсионных поворотов иногда рассматривают зеркальные повороты . Геометрически возможные сочетания этих операций определяют ту или иную точечную группу (рис. 3), которые изображаются обычно в стереографической проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографической проекции.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (СИ)"
Книги похожие на "Большая Советская Энциклопедия (СИ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (СИ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (СИ)", комментарии и мнения людей о произведении.