БСЭ БСЭ - Большая Советская Энциклопедия (СЛ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (СЛ)"
Описание и краткое содержание "Большая Советская Энциклопедия (СЛ)" читать бесплатно онлайн.
Лит.: Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971; Соболь И. М., Численные методы Монте-Карло, М., 1973.
С. М. Ермаков.
Случайный процесс
Случа'йный проце'сс (вероятностный, или стохастический), процесс (т. е. изменение во времени состояния некоторой системы), течение которого может быть различным в зависимости от случая и для которого определена вероятность того или иного его течения. Типичным примером С. п. может служить броуновское движение ; другими практически важными примерами являются турбулентные течения жидкостей и газов, протекание тока в электрической цепи при наличии неупорядоченных флуктуаций напряжения и силы тока (шумов) и распространение радиоволн при наличии случайных замираний (федингов) радиосигналов, создаваемых метеорологическими или иными помехами. К числу С. п. могут быть причислены и многие производственные процессы, сопровождающиеся случайными флуктуациями, а также ряд процессов, встречающихся в геофизике (например, вариации земного магнитного поля), физиологии (например, изменение биоэлектрических потенциалов мозга, регистрируемое на электроэнцефалограмме) и экономике.
Для возможности применения математических методов к изучению С. п. требуется, чтобы мгновенное состояние системы можно было схематически представить в виде точки некоторого фазового пространства (пространства состояний) R', при этом С. п. будет представляться функцией X (t ) времени t со значениями из R. Наиболее изученным и весьма интересным с точки зрения многочисленных приложений является случай, когда точки R задаются одним или несколькими числовыми параметрами (обобщёнными координатами системы). В математических исследованиях под С. п. часто понимают просто числовую функцию X (t ), могущую принимать различные значения в зависимости от случая с заданным распределением вероятностей для различных возможных её значений — одномерный С. п.; если же точки R задаются несколькими числовыми параметрами, то соответствующий С. п. X (t )={X1 (t ), X2 (t ),..., Xk (t )} называется многомерным.
Математическая теория С. п. (а также более общих случайных функций произвольного аргумента) является важной главой вероятностей теории . Первые шаги по созданию теории С. п. относились к ситуациям, когда время t изменялось дискретно, а система могла иметь лишь конечное число разных состояний, т. е. — к схемам последовательности зависимых испытаний (А. А. Марков старший и др.). Развитие теорий С. п., зависящих от непрерывно меняющегося времени, является заслугой сов. математиков Е. Е. Слуцкого , А. Н. Колмогорова и А. Я. Хинчина , американских математиков Н. Винера , В. Феллера и Дж. Дуба, французского математика П. Леей , швед. математика X. Крамера и др. Наиболее детально разработана теория некоторых специальных классов С. п., в первую очередь — марковских процессов и стационарных случайных процессов , а также ряда подклассов и обобщений указанных двух классов С. п. (цепи Маркова, ветвящиеся процессы, процессы с независимыми приращениями, мартингалы, процессы со стационарными приращениями и др.).
Лит.: Марков А. А., Замечательный случай испытаний, связанных в цепь, в его кн.: Исчисление вероятностей, 4 изд., М., 1924; Слуцкий Е. Е., Избранные труды, М., 1960; Колмогоров А. Н., Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5, с. 5—41; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, там же, с. 42—51; Винер Н., Нелинейные задачи в теории случайных процессов, пер. с англ., М., 1961; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Леви П., Стохастические процессы и броуновское движение, пер. с франц., М., 1972; Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Розанов Ю. А., Случайные процессы, М., 1971; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1—2, М., 1971—73.
А. М. Яглом.
Случайных процессов прогнозирование
Случа'йных проце'ссов прогнози'рование (экстраполирование), предсказание значения случайного процесса в некоторый будущий момент времени по наблюдённым значениям этого процесса (или, более общо, какого-либо статистически с ним связанного процесса — например суммы прогнозируемого процесса с искажающими наблюдения случайными помехами, т. е. с «шумом») в прошлом и настоящем. Практически во всех представляющих интерес ситуациях предсказываемое значение процесса X (t ) в момент t = t1 не может быть точно определено по имеющимся данным наблюдений и можно лишь добиваться, чтобы случайная ошибка прогноза D = X (t1 )- X1 (t1 ) [где X1 (t1 ) — предсказанное значение X (t1 )] в среднем была бы по возможности наименьшей. В теории С. п. п. оптимальным (наилучшим) обычно считается прогноз, для которого минимально математическое ожидание квадрата ошибки D; такой оптимальный прогноз совпадает с условным математическим ожиданием случайной величины X (t1 ) при условии, что наблюдаемые величины, по которым строится прогноз, принимают фиксированные (известные из наблюдений) значения. Большое место в теории С. п. п. занимает теория оптимального линейного С. п. п., посвященная методам нахождения линейной функции от данных наблюдений такой, что для неё средний квадрат её отклонения от X (t1 ) меньше, чем для всех других линейных функций; в ряде практически важных случаев такое оптимальное линейное С. п. п. совпадает с общим оптимальным С. п. п.
Общая теория оптимального линейного С. п. п. для стационарных случайных процессов была разработана А. Н. Колмогоровым и Н. Винером . Большое развитие получила также теория оптимального (и линейного, и общего нелинейного) прогнозирования процессов, являющихся компонентами марковских случайных процессов.
Лит.: Колмогорова. Н., Интерполирование и экстраполирование стационарных случайных последовательностей, «Изв. АН СССР. Сер. математическая», 1941, т. 5, №1; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Розанов Ю. А., Стационарные случайные процессы, М., 1963; Липцер Р. Ш., Ширяев А. Н., Статистика случайных процессов. Нелинейная фильтрация и смежные вопросы, М., 1974; Бокс Дж., Дженкинс Г., Анализ временных рядов. Прогноз и управление, пер. с англ., в. 1—2, М., 1974; Wiener N., Extrapolation, interpolation and smoothing of stationary time series, N. Y., 1949.
А. М. Яглом.
Случайных чисел датчик
Случа'йных чи'сел да'тчик, устройство для выработки случайных чисел, равномерно распределённых в заданном диапазоне чисел. Применяется для имитации реальных условий функционирования систем автоматического управления, для решения задач методом статистических испытаний (Монте-Карло методом ), для моделирования случайных изменений параметров производства в автоматизированных системах управления и т. д. Кроме непосредственного использования в статистических моделях, равномерно распределённые случайные числа, вырабатываемые С. ч. д., являются основой для формирования числовых последовательностей с заданным законом распределения.
Основной блок С. ч. д. — генератор случайных равновероятных цифр (ГРЦ), наиболее часто двоичных, из которых затем формируются необходимые многоразрядные сочетания (числа). В ГРЦ, в качестве первичного источника случайных сигналов используют собственные шумы электровакуумных, газоразрядных, полупроводниковых приборов и специальных резисторов, a-частицы, b-частицы и g-лучи радиоактивных излучений, флуктуации фазы и амплитуды гармонических колебаний и т. п. В состав ГРЦ входят соответствующие приборы, формирующие исходные сигналы и называются источниками первичных случайных процессов, а также усилитель-формирователь, преобразующий исходный случайный процесс к виду, удобному для цифровой интерпретации, цифровой преобразователь сформированных случайных сигналов в дискретные равновероятные состояния какого-либо электронного устройства (например, триггера ), каждому из которых ставится в соответствие определённая цифра, стабилизатор вероятности, обеспечивающий устойчивость вероятностных характеристик генерируемой последовательности цифр. Один из основных способов стабилизации предполагает совмещение прямых и инверсных представлений генерируемых цифр. При этом стабилизированная последовательность S1 , S2 ,..., Si ,... формируется из основной x1 , x2 ,..., xi , ... и управляющей y1 , y2 ,..., yi , ... по правилу:
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (СЛ)"
Книги похожие на "Большая Советская Энциклопедия (СЛ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (СЛ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (СЛ)", комментарии и мнения людей о произведении.