БСЭ БСЭ - Большая Советская Энциклопедия (ТО)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ТО)"
Описание и краткое содержание "Большая Советская Энциклопедия (ТО)" читать бесплатно онлайн.
Современный этап развития Т. характеризуется внедрением средств автоматизации в дело создания топографических карт. Практически приемлемые результаты уже получены для процессов считывания с помощью ЭВМ информации с аэроснимков и её записи в цифровой форме, автоматизированного преобразования последней при составлении оригиналов карт (включая трансформирование из центральной проекции в ортогональную, рисовку рельефа в горизонталях, дешифрирование части объектов) на различных приборах и гравировании (или вычерчивании) оригиналов для издания. Наряду с изготовлением карт средства автоматизации применимы в Т. для построения так называемых цифровых моделей местности, то есть формализованных её моделей, представленных координатами и характеристиками точек местности, записанными цифровым кодом (например, на магнитной ленте) для последующей обработки на ЭВМ. Эти модели служат для: 1) дополнения карты данными, не выражающимися ни при графическом, ни при фотографическом воспроизведении местности (см. Фотокарты ), но весьма важными при ряде изысканий и в первую очередь в целях землеустройства и городского строительства; 2) выделения содержащейся на картах информации (объектов того или иного вида, типов территории, комплекса сведений, существенных при решении таких инженерных задач, как выбор трасс каналов, дорог и трубопроводов, участков под водохранилища, аэродромы, лесопосадки и т.п.). Цифровая форма даёт также возможность кодирования и поиска необходимых материалов картографического значения при их сосредоточении в справочно-информационных фондах. Автоматизация дистанционных методов получения топографической информации позволила приступить к съёмке поверхности Луны и части планет с изготовлением блоков обзорно-топографических карт на большие площади, отдельных листов собственно топографических карт на избранные участки и крупномасштабных планов на местность вокруг пунктов посадки межпланетных автоматических станций и космических кораблей, а также по трассам луноходов.
Лит.: 50 лет советской геодезии и картографии, М., 1967; Альбом образцов изображения рельефа на топографических картах, М., 1968; Подобедов Н. С., Полевая картография, М., 1970; Салищев К. А., Картография, 2 изд., М., 1971; Куприн А. М., Говорухин А. М., Гамезо М. В., Справочник по военной топографии, М., 1973: Картография с основами топографии, под ред. А. В. Гедымина, ч. 1—2, М., 1973; Соколова Н. А.. Фотограмметрические методы топографического картографирования, в кн.: Итоги науки и техники. Геодезия и аэросъёмка, т. 8, М., 1973; Лобанов А. Н., Аэрофототопография, М., 1971; Материалы Всесоюзной конференции по проблемам крупномасштабных топографических съёмок (Москва, 1973), М., 1974; Господ и нов Г. В., Сорокин В. Н., Топография, 2 изд., М., 1974; Гольдман Л. М., Совершенствование содержания топографических карт и планов, предназначенных для мелиорации земель, «Геодезия и картография», 1974, № 4; Салищев К. А., Картоведение, М., 1976: Поспелов Е. М., Картографическая изученность зарубежных стран, М., 1975.
Л.М. Гольдман.
Топография барическая
Топография бари'ческая , распределение высот или геопотенциалов той или иной изобарической поверхности над уровнем моря (абсолютная Т. б. ) или над уровнем другой нижележащей изобарической поверхности (относительная Т. б.).
Топография военная
Топогра'фия вое'нная, см. Военная топография .
Топозеро
Топо'зеро, озеро в северной части Карельской АССР. Площадь 986 км 2 . Расположено на высоте 109 м . Вытянуто с С.-С.-З. на Ю.-Ю.-В. Берега, особенно восточный, изрезанные; на Т. много островов, общая площадь 63 км 2 . Питание преимущественно снеговое. Высшие уровни в июне, низшие в апреле. Замерзает в конце октября — ноябре, вскрывается в мае. С созданием Кумской ГЭС в 1966 стало частью Кумского водохранилища . Лесосплав. Лов рыбы (ряпушка, хариус, сиг, корюшка и др.).
Топологическая психология
Топологи'ческая психоло'гия, психологическая концепция немецко-американского психолога К. Левина, представляющая собой применение понятий топологии к разработанной им теории психологического «поля». Развита в 1930-х гг. Включает как собственно математические, так и психологические понятия, с помощью которых описываются статические и динамические особенности психологического поля. См. ст. Левин К. и литературу при ней.
Топологическое пространство
Топологи'ческое простра'нство, множество, состоящее из элементов любой природы, в котором тем или иным способом определены предельные соотношения. Предельные соотношения, наличие которых превращает данное множество Х в топологическое пространство, состоят в том, что для каждого подмножества А множества Х определено его замыкание, то есть множество [А ], состоящее из всех элементов множества А и из предельных точек этого множества (если какое-либо множество является Т.п., то его элементы, независимо от их действительной природы, принято называть точками данного Т.п.). «Ввести в данное множество Х топологию», или «превратить данное множество Х в Т. п.», — это значит тем или иным способом указать замыкание [А ] для каждого подмножества А множества Х . Точки множества [А] называются точками прикосновения множества А .
Каждое метрическое пространство мо жет быть естественным образом превращено в Т. п., поэтому говорят (допуская некоторую неточность), что метрическое пространство является частным случаем топологического. В частности, числовая прямая, евклидово пространство любого числа измерений, различные функциональные пространства могут служить примерами метрических и, следовательно, топологических пространств. Существует много способов вводить в данное множество Х топологию, то есть превращать его в Т. п.; например, в случае метрических пространств топология вводится посредством вспомогательного понятия расстояния. В очень многих случаях топология в данное множество Х вводится посредством окрестностей: для каждого элемента (для каждой «точки») множества Х некоторые подмножества множества Х выделяются в качестве окрестностей данной точки. В предположении, что окрестности определены, точка х объявляется точкой прикосновения множества А, если каждая окрестность этой точки содержит хотя бы одну точку множества А. См. также ст. Топология и литературу при ней.
Топология
Тополо'гия (от греч. tо'pos — место и ¼логия ) — часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных подходов к её изучению привели к распадению единой Т. на ряд отделов («общая Т.», «алгебраическая Т.» и др.), отличающихся друг от друга по предмету и методу изучения и фактически весьма мало между собой связанных.
I. Общая топология
Часть Т., ориентированная на аксиоматическое изучение непрерывности, называется общей Т. Наряду с алгеброй общая Т. составляет основу современного теоретико-множественного метода в математике.
Аксиоматически непрерывность можно определить многими (вообще говоря, неравносильными) способами. Общепринята аксиоматика, основывающаяся на понятии открытого множества. Топологической структурой, или топологией, на множестве Х называют такое семейство его подмножеств, называемых открытыми множествами, что: 1) пустое множество Æ и всё Х открыты; 2) объединение любого числа и пересечение конечного числа открытых множеств открыто. Множество, на котором задана топологическая структура, называют топологическим пространством . В топологическом пространстве Х можно определить все основные понятия элементарного анализа, связанные с непрерывностью. Например, окрестностью точки x Î X называют произвольное открытое множество, содержащее эту точку; множество A Ì X называют замкнутым, если его дополнение Х \ А открыто; замыканием множества А называют наименьшее замкнутое множество, содержащее A ; если это замыкание совпадает с X , то А называют всюду плотным в Х и т.д.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ТО)"
Книги похожие на "Большая Советская Энциклопедия (ТО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ТО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ТО)", комментарии и мнения людей о произведении.