БСЭ БСЭ - Большая Советская Энциклопедия (ТО)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ТО)"
Описание и краткое содержание "Большая Советская Энциклопедия (ТО)" читать бесплатно онлайн.
В частности, на сфере S n существует единственная кусочно-линейная структура. Гладких структур на сфере S n может быть много, например, на S 7 существует 28 различных гладких структур. На торе T n (топологических произведении n экземпляров окружности S 1 ) существует при n ³ 5 много различных кусочно-линейных структур, которые все допускают гладкую структуру. Таким образом, начиная с размерности 5, существуют гомеоморфные, но не диффеоморфные гладкие многообразия; сферы с таким свойством существуют, начиная с размерности 7.
Задачу описания (с точностью до a-гомеоморфизма) всех n -мерpных (n ³ 5) связных компактных a-многообразий естественно решать в два этапа: искать условия гомотопической эквивалентности a-многообразий и условия a-гомеоморфности гомотопически эквивалентных a-многообразий. Первая задача относится к гомотопической Т. и в её рамках может считаться полностью решенной. Вторая задача также по существу полностью решена (во всяком случае для односвязных a-многообразий). Основой её решения является перенос в высшие размерности техники «разложения на ручки». С помощью этой техники удаётся, например, доказать для n -мерных (n ³ 5) топологических многообразий гипотезу Пуанкаре (связное компактное топологическое многообразие, гомотопически эквивалентное сфере, гомеоморфно ей).
Наряду с a-многообразиями можно рассматривать так называемые a-многообразия с краем; они характеризуются тем, что окрестности некоторых их точек (составляющих край) a-гомеоморфны полупространству X n ³ 0 пространства . Край является (n— 1)-мерным a-многообразием (вообще говоря, несвязным). Два n -мерных компактных a-многообразия Х и Y называются (ко) бордантными, если существует такое (n +1)-мерное компактное a-многообразие с краем W, что его край является объединением непересекающихся гладких многообразий, a-гомеоморфных Х и У . Если отображения вложения X ® W и Y ® W являются гомотопическими эквивалентностями, то гладкие многообразия называются h -кобордантными. Методами разложения на ручки удаётся доказать, что при n ³ 5 односвязные компактные a-многоооразия a-гомеоморфны, если они h -кобордантны. Эта теорема о h -кобордизме доставляет сильнейший способ установления a-гомеоморфности a-многообразий (в частности, гипотеза Пуанкаре является её следствием). Аналогичный, но более сложный результат имеет место и для неодносвязных a-многообразий.
Совокупность классов кобордантных компактных a-многообразий является по отношению к операции связной суммы коммутативной группой. Нулём этой группы служит класс a-многообразий, являющихся краями, то есть кобордантных нулю. Оказывается, что эта группа при a = s изоморфна гомотопической группе p2n+1 MO (n+ 1) некоторого специально сконструированного топологического пространства MO (n+ 1), называется пространством Тома. Аналогичный результат имеет место и при a = p , t . Поэтому методы алгебраической Т. позволяют в принципе вычислить группу . В частности, оказывается, что группа является прямой суммой групп ℤ2 в количестве, равном числу разбиений числа n на слагаемые, отличные от чисел вида 2m —1. Например, = 0 (так что каждое трёхмерное компактное гладкое многообразие является краем). Напротив, = ℤ2 , так что существуют поверхности, кобордантные друг другу и не кобордантные нулю; такой поверхностью, например, является проективная плоскость P 2 .
М. М. Постников.
6. Основные этапы развития топологии
Отдельные результаты топологического характера были получены ещё в 18—19 вв. (теорема Эйлера о выпуклых многогранниках, классификация поверхностей и теорема Жордана о том, что лежащая в плоскости простая замкнутая линия разбивает плоскость на две части). В начале 20 в. создаётся общее понятие пространства в Т. (метрическое — М. Фреше , топологическое — Ф. Хаусдорф ), возникают первоначальные идеи теории размерности и доказываются простейшие теоремы о непрерывных отображениях (А. Лебег , Л. Брауэр ), вводятся полиэдры (А. Пуанкаре ) и определяются их так называемые числа Бетти. Первая четверть 20 в. завершается расцветом общей Т. и созданием московской топологической школы; закладываются основы общей теории размерности (П. С. Урысон ); аксиоматике топологических пространств придаётся её современный вид (П. С. Александров ); строится теория компактных пространств (Александров, Урысон) и доказывается теорема об их произведении (А. Н. Тихонов ); впервые даются необходимые и достаточные условия метризуемости пространства (Александров, Урысон); вводится (Александров) понятие локально конечного покрытия [на основе которого в 1944 Ж. Дьёдонне (Франция) определил паракомпактные пространства]; вводятся вполне регулярные пространства (Тихонов); определяется понятие нерва и тем самым основывается общая теория гомологий (Александров). Под влиянием Э. Нётер числа Бетти осознаются как ранги групп гомологий, которые поэтому называются также группами Бетти. Л. С. Понтрягин , основываясь на своей теории характеров, доказывает законы двойственности для замкнутых множеств.
Во 2-й четверти 20 в. продолжается развитие общей Т. и теории гомологий: в развитие идей Тихонова А. Стоун (США) и Э. Чех вводят так называемое стоун — чеховское, или максимальное, (би)компактное расширение вполне регулярного пространства; определяются группы гомологий произвольных пространств (Чех), в группы когомологий (Дж. Александер , А. Н. Колмогоров ) вводится умножение и строится кольцо когомологий. В это время в алгебраической Т. царят комбинаторные методы, основывающиеся на рассмотрении симплициальных схем; поэтому алгебраическая Т. иногда и до сих пор называется комбинаторной Т. Вводятся пространства близости и равномерные пространства. Начинает интенсивно развиваться теория гомотопий (Х. Хопф , Понтрягин); определяются гомотопические группы (В. Гуревич, США) и для их вычисления применяются соображения гладкой Т. (Понтрягин). Формулируются аксиомы групп гомологий и когомологий (Н. Стинрод и С. Эйленберг, США). Возникает теория расслоений (Х. Уитни, США; Понтрягин); вводятся клеточные пространства (Дж. Уайтхед, Великобритания).
Во 2-й половине 20 в. в СССР складывается советская школа общей Т. и теории гомологий: ведутся работы по теории размерности, проблеме метризации, теории (би)компактных расширений, общей теории непрерывных отображений (факторных, открытых, замкнутых), в частности теории абсолютов; теории так называемых кардинальнозначных инвариантов (А.В. Архангельский, Б. А. Пасынков, В. И. Пономарев, Е. Г. Скляренко, Ю. М. Смирнов и др.).
Усилиями ряда учёных (Ж. П. Серр и А. Картан во Франции, М. М. Постников в СССР, Уайтхед и др.) окончательно складывается теория гомотопий. В это время создаются крупные центры алгебраической Т. в США, Великобритании и др. странах; возобновляется интерес к геометрической Т. Создаётся теория векторных расслоений и К -функтора (М. Атья, Великобритания; Ф. Хирцебрух, ФРГ), алгебраическая Т. получает широкие применения в гладкой Т. (Р. Том, Франция) и алгебраической геометрии (Хирцебрух); развивается теория (ко)бордизмов (В. А. Рохлин, СССР; Том, С. П. Новиков ) и теория сглаживания и триангулируемости (Дж. Милнор, США).
Развитие Т. продолжается во всех направлениях, а сфера её приложений непрерывно расширяется.
А. А. Мальцев.
Лит.: Александров П. С., Введение в общую теорию множеств и функций, М.—Л., 1948; Пархоменко А. С., Что такое линия, М., 1954; Понтрягин Л. С., Основы комбинаторной топологии, М.—Л., 1947; его же, Непрерывные группы, 3 изд., М., 1973; Милнор Дж., Уоллес А,, Дифференциальная топология. Начальный курс, пер. с англ., М., 1972; Стинрод Н., Чинн У., Первые понятия топологии, пер. с англ., М., 1967; Александров П. С., Комбинаторная топология, М.—Л., 1947; Александров П. С., Пасынков Б. А., Введение в теорию размерности. Введение в теорию топологических пространств и общую теорию размерности, М., 1973; Александров П. С., Введение в гомологическую теорию размерности и общую комбинаторную топологию, М., 1975; Архангельский А. В., Пономарев В. И,, Основы общей топологии в задачах и упражнениях, М., 1974; Постников М. М., Введение в теорию Морса, М., 1971; Бурбаки Н., Общая топология. Основные структуры, пер. с франц., М., 1968; его же, Общая топология. Топологические группы. Числа и связанные с ними группы и пространства, пер. с франц., М., 1969; его же, Общая топология. Использование вещественных чисел в общей топологии. Функциональные пространства. Сводка результатов. Словарь, пер. с франц., М., 1975; Куратовский К., Топология, пер. с англ., т. 1—2, М., 1966—69; Ленг С., Введение в теорию дифференцируемых многообразий, пер. с англ., М., 1967; Спеньер Э., Алгебраическая топология, пер. с англ., М., 1971.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ТО)"
Книги похожие на "Большая Советская Энциклопедия (ТО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ТО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ТО)", комментарии и мнения людей о произведении.