» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ТВ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ТВ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ТВ)" читать бесплатно онлайн.








  Диэлектрики. Кристаллы, имеющие только заполненные и пустые электронные энергетические зоны, ведут себя в электрическом поле как изоляторы. Первый возбуждённый уровень находится на конечном расстоянии от основного, причём ширина запрещенной зоны DE порядка нескольких эв.

  Делокализация электронов в таких Т. т. не играет роли даже при описании электронных свойств, диэлектрики можно считать состоящими из разделённых в пространстве атомов, молекул или ионов. Электрическое поле E, сдвигая заряды, поляризует диэлектрики.

  Характеристикой поляризации может служить электрический дипольный момент единицы объёма Р, электрическая индукция D = Е + 4pР или диэлектрическая восприимчивость a, связывающая поляризацию Р и внешнее электрическое поле Е:  Р = aЕ. Отсюда e = 1 + 4pa, где e — диэлектрическая проницаемость. В природе отсутствуют вещества с поляризацией Р, направленной против поля Е, и a < 0 (аналоги диамагнетиков). Поэтому всегда e > 1. У обычных диэлектриков дипольный момент появляется лишь во внешнем электрическом поле. При этом e близка к 1 и слабо зависит от температуры. У некоторых диэлектриков частицы обладают спонтанными дипольными моментами, а электрическое поле их ориентирует (ориентационная поляризация), в этом случае при высоких температурах e ~ 1/Т. При низких температурах дипольные моменты спонтанно ориентируются и вещество переходит в пироэлектрическое состояние (см. Пироэлектрики). Появление спонтанной поляризации сопровождается изменением симметрии кристалла и перестройкой кристаллической структуры (или ею вызвано) и является фазовым переходом. Если этот переход 2-го рода, то называется сегнетоэлектрическим. В точке сегнетоэлектрического перехода e имеет максимум (см. Сегнетоэлектрики). Особый класс диэлектриков составляют пьезоэлектрики, у которых упругие напряжения вызывают поляризацию, пропорциональную им. Только кристаллы, не обладающие центром симметрии, могут быть пьезоэлектриками (см. Пьезоэлектричество).

  Диэлектрическая проницаемость меняется с частотой w внешнего электрического поля. Эта зависимость (дисперсия) проявляется как зависимость от частоты w фазовой и групповой скоростей распространения света в диэлектрике. Взаимодействие переменного электрического поля с Т. т. сопровождается переходом энергии этого поля в тепло (диэлектрические потери) и описывается мнимой частью e. Частотная и температурная зависимости e — следствие диссипативных и релаксационных процессов в Т. т.

  Поглощение света диэлектриком можно трактовать как электронное возбуждение фотоном структурной частицы кристалла. Однако возбуждённое состояние не локализуется на определённых атомах или молекулах, а благодаря резонансному взаимодействию соседних частиц движется по кристаллу, за счёт чего уровень энергии расширяется в зону (экситон Френкеля).

  Магнитные свойства Т. т. При достаточно высоких температурах Т. т. либо диамагнитны (см. Диамагнетизм), либо парамагнитны (см. Парамагнетизм). В первом случае вектор намагниченности направлен против магнитного поля и его происхождение — результат общей прецессии всех электронов Т. т. с угловой частотой wL = еН/2mc (см. Лармора прецессия). Диамагнитная восприимчивость c пропорциональна среднему квадрату расстояния электронов от ядра и поэтому может служить источником информации о структуре Т. т. Электроны проводимости металлов и полупроводников делокализованы, однако благодаря квантованию их движения в плоскости, перпендикулярной магнитному полю, они вносят вклад в c, причём у металлов этот вклад того же порядка, что и c ионного остова (диамагнетизм Ландау). Диамагнетизм (общее свойство атомов и молекул) слабо зависит от агрегатного состояния вещества и от температуры. Он проявляется только в том случае, если не перекрывается парамагнетизмом.

  Парамагнетизм — следствие ориентации магнитных моментов атомов и электронов проводимости (в металле и полупроводнике) магнитным полем. При высоких температурах парамагнитная восприимчивость убывает обратно пропорционально температуре (Кюри закон); для типичных парамагнетиков при 300 К она » 10-5 Исключение составляют непереходные металлы. Их парамагнитная восприимчивость аномально мала (~ 10-6) и слабо зависит от температуры. Это — результат вырождения электронов проводимости (парамагнетизм Паули). Наличие собственных магнитных моментов у атомов, ионов, электронов и связанное с этим расщепление электронных уровней энергии в магнитном поле (см. Зеемана эффект) приводят к существованию резонансного поглощения энергии переменного магнитного поля (см. Электронный парамагнитный резонанс). Структура магнитных уровней очень чувствительна к сравнительно слабым взаимодействиям (например, к окружению частиц). Поэтому парамагнетизм (в частности, электронный парамагнитный резонанс) служит одним из важнейших источников сведений о состоянии атомных частиц в Т. т. (о положении в ячейке кристалла, химической связи и т. п.).

  При понижении температуры парамагнетики (диэлектрики и переходные металлы) переходят в ферро-, в антиферро- или ферримагнитное состояния (см. Ферромагнетизм, Антиферромагнетизм, Ферримагнетизм), для которых характерно упорядоченное расположение собственных магнитных атомов. Непереходные металлы, как правило, остаются парамагнитными вплоть до Т= 0 К (Li, Na и т. д.). Однако нельзя утверждать, что упорядоченное магнитное состояние — следствие локализации атомных магнитных моментов. Существуют ферромагнитные сплавы (например, типа ZrZn2), в которых ферромагнетизм, по-видимому, полностью обусловлен зонными (делокализованными) электронами. Переходы парамагнитное — ферромагнитное и парамагнитное — антиферромагнитное состояния в большинстве случаев — фазовые переходы 2-го рода. температура, при которой происходит переход в ферромагнитное состояние, называется температурой Кюри Tc, а в антиферромагнитное — температурой Нееля TN. При Т = Tc или Т = TN наблюдаются скачок теплоёмкости, рост магнитной восприимчивости и т. п. температуры Tc и TN, для различных Т. т. сильно различаются (например, для Fe Tc= 1043 К, для Gd Tc = 289 К, а для FeCI TN = 23,5 К). Силы, упорядочивающие магнитные моменты при температуре Т < Tc или Т < TN, имеют квантовое происхождение, хотя обусловлены электростатическими кулоновскими взаимодействиями между атомарными электронами (см. Обменное взаимодействие). Релятивистские (магнитные, спинорбитальные и т. п.) взаимодействия ответственны за анизотропию магнитных свойств (см. Магнитная анизотропия).

  Вблизи Т = 0 К отклонения от магнитного порядка малы и не локализуются в определённых участках, а в виде волн распространяются по кристаллу. Это — спиновые волны; соответствующие им квазичастицы — магноны проявляют себя в тепловых и магнитных свойствах. Так, тепловое возбуждение спиновых волн увеличивает теплоёмкость магнетиков (по сравнению с немагнитными телами) и приводит к характерной зависимости теплоёмкости от температуры (например, при T << q2/Tc у ферромагнитных диэлектриков С ~ Т); резонансное поглощение электромагнитной или звуковой энергии магнетиком (Ферромагнитный резонанс, Ферроакустический резонанс) есть не что иное, как превращение фотона или фонона в магнон; температурная зависимость намагниченности ферромагнетиков и магнитной восприимчивости антиферромагнетиков при Т £ Tc — результат «вымерзания» спиновых волн с понижением температуры.

  Ядерные явления в Т. т. Роль атомных ядер в свойствах Т. т. не ограничивается тем. что в них сосредоточены масса тела и его положительный заряд. Если ядра обладают магнитными моментами, то при достаточно низкой температуре их вклад в парамагнитную восприимчивость и теплоёмкость становится ощутимым. Особенно отчётливо это проявляется при измерении резонансного поглощения энергии переменного магнитного поля. Зеемановское расщепление ядерных уровней энергии является причиной ядерного магнитного резонанса, одного из широко распространённых методов изучения Т. т., так как структура ядерных магнитных уровней существенно зависит от свойств электронной оболочки атома.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ТВ)"

Книги похожие на "Большая Советская Энциклопедия (ТВ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ТВ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ТВ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.