» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ТЯ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ТЯ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ТЯ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ТЯ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ТЯ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ТЯ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ТЯ)" читать бесплатно онлайн.








  Основная идея теории тяготения Эйнштейна

  Рассмотренная выше система отсчёта (космический корабль с работающим двигателем), движущаяся с постоянным ускорением в отсутствие поля Т., имитирует только однородное гравитационное поле, одинаковое по величине и направлению во всём пространстве. Но поля Т., создаваемые отдельными телами, не таковы. Для того чтобы имитировать, например, сферическое поле Т. Земли, нужны ускоренные системы с различным направлением ускорения в различных точках. Наблюдатели в разных системах, установив между собой связь, обнаружат, что они движутся ускоренно друг относительно друга, и тем самым установят отсутствие истинного поля Т. Таким образом, истинное поле Т. не сводится просто к введению ускоренной системы отсчёта в обычном пространстве, или, говоря точнее, в пространстве-времени специальной теории относительности. Однако Эйнштейн показал, что если, исходя из принципа эквивалентности, потребовать, чтобы истинное гравитационное поле было эквивалентно локальным соответствующим образом ускоренным в каждой точке системам отсчёта, то в любой конечной области пространство-время окажется искривленным — неевклидовым. Это означает, что в трёхмерном пространстве геометрия, вообще говоря, будет неевклидовой (сумма углов треугольника не равна p, отношение длины окружности к радиусу не равно 2p и т.д.), а время в разных точках будет течь по-разному. Таким образом, согласно теории тяготения Эйнштейна, истинное гравитационное поле является не чем иным, как проявлением искривления (отличия геометрии от евклидовой) четырёхмерного пространства-времени.

  Следует подчеркнуть, что создание теории тяготения Эйнштейна стало возможным только после открытия неевклидовой геометрии русским математиком Н. И. Лобачевским , венгерским математиком Я. Больяй , немецкими математиками К. Гауссом и Б. Риманом .

  В отсутствие Т. движение тела по инерции в пространстве-времени специальной теории относительности изображается прямой линией, или, на математическом языке, экстремальной (геодезической) линией. Идея Эйнштейна, основанная на принципе эквивалентности и составляющая основу теории Т., заключается в том, что и в поле Т. все тела движутся по геодезическим линиям в пространстве-времени, которое, однако, искривлено, и, следовательно, геодезические линии уже не прямые.

  Массы, создающие поле Т., искривляют пространство-время. Тела, которые движутся в искривленном пространстве-времени, и в этом случае движутся по одним и тем же геодезическим линиям независимо от массы или состава тела. Наблюдатель воспринимает это движение как движение по искривленным траекториям в трёхмерном пространстве с переменной скоростью. Но с самого начала в теории Эйнштейна заложено, что искривление траектории, закон изменения скорости — это свойства пространства-времени, свойства геодезических линий в этом пространстве-времени, а следовательно, ускорение любых различных тел должно быть одинаково и, значит, отношение тяжёлой массы к инертной [от которого зависит ускорение тела в заданном поле Т., см. формулу (6)] одинаково для всех тел, и эти массы неотличимы. Таким образом, поле Т., по Эйнштейну, есть отклонение свойств пространства-времени от свойств плоского (не искривлённого) многообразия специальной теории относительности.

  Вторая важная идея, лежащая в основе теории Эйнштейна, — утверждение, что Т., то есть искривление пространства-времени, определяется не только массой вещества, слагающего тело, но и всеми видами энергии, присутствующими в системе. Эта идея явилась обобщением на случай теории Т. принципа эквивалентности массы (m ) и энергии (Е ) специальной теории относительности, выражающейся формулой Е = mс 2 . Согласно этой идее, Т. зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного поля и всех др. физических полей.

  Наконец, в теории тяготения Эйнштейна обобщается вывод специальной теории относительности о конечной скорости распространения всех видов взаимодействия. Согласно Эйнштейну, изменения гравитационного поля распространяются в вакууме со скоростью с.

  Уравнения тяготения Эйнштейна

  В специальной теории относительности в инерциальной системе отсчёта квадрат четырёхмерного «расстояния» в пространстве-времени (интервала ds ) между двумя бесконечно близкими событиями записывается в виде:

  ds 2 = (cdt )2 - dx 2 - dy 2 - dz 2 (7)

  где t — время, х, у, z — прямоугольные декартовы (пространственные) координаты. Эта система координат называется галилеевой. Выражение (7) имеет вид, аналогичный выражению для квадрата расстояния в евклидовом трёхмерном пространстве в декартовых координатах (с точностью до числа измерений и знаков перед квадратами дифференциалов в правой части). Такое пространство-время называют плоским, евклидовым, или, точнее, псевдоевклидовым, подчёркивая особый характер времени: в выражении (7) перед (cdt )2 стоит знак «+», в отличие от знаков «—» перед квадратами дифференциалов пространственных координат. Таким образом, специальная теория относительности является теорией физических процессов в плоском пространстве-времени (пространстве-времени Минковского; см. Минковского пространство ).

  В пространстве-времени Минковского не обязательно пользоваться декартовыми координатами, в которых интервал записывается в виде (7). Можно ввести любые криволинейные координаты. Тогда квадрат интервала ds 2 будет выражаться через эти новые координаты общей квадратичной формой:

  ds 2 = g ik dx i dx k (8)

  (i , k = 0, 1, 2, 3), где x 1 , x 2 , x 3 произвольные пространств, координаты, x 0 = ct — временная координата (здесь и далее по дважды встречающимся индексам производится суммирование). С физической точки зрения переход к произвольным координатам означает и переход от инерциальной системы отсчёта к системе, вообще говоря, движущейся с ускорением (причём в общем случае разным в разных точках), деформирующейся и вращающейся, и использование в этой системе не декартовых пространственных координат. Несмотря на кажущуюся сложность использования таких систем, практически они иногда оказываются удобными. Но в специальной теории относительности всегда можно пользоваться и галилеевой системой, в которой интервал записывается особенно просто. [В этом случае в формуле (8) g ik = 0 при i ¹ k, g 00 = 1, g ii = —1 при i = 1, 2, 3.]

  В общей теории относительности пространство-время не плоское, а искривленное. В искривленном пространстве-времени (в конечных, не малых, областях) уже нельзя ввести декартовы координаты, и использование криволинейных координат становится неизбежным. В конечных областях такого искривленного пространства-времени ds 2 записывается в криволинейных координатах в общем виде (8). Зная g ik как функции четырёх координат, можно определить все геометрические свойства пространства-времени. Говорят, что величины g ik определяют метрику пространства-времени , а совокупность всех g ik называют метрическим тензором. С помощью g ik вычисляются темп течения времени в разных точках системы отсчёта и расстояния между точками в трёхмерном пространстве. Так, формула для вычисления бесконечно малого интервала времени d t по часам, покоящимся в системе отсчёта, имеет вид:

 

  При наличии поля Т. величина g 00 в разных точках разная, следовательно, темп течения времени зависит от поля Т. Оказывается, что чем сильнее поле, тем медленнее течёт время по сравнению с течением времени для наблюдателя вне поля.

  Математическим аппаратом, изучающим неевклидову геометрию (см. Риманова геометрия ) в произвольных координатах, является тензорное исчисление . Общая теория относительности использует аппарат тензорного исчисления, её законы записываются в произвольных криволинейных координатах (это означает, в частности, запись в произвольных системах отсчёта), как говорят, в ковариантном виде.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ТЯ)"

Книги похожие на "Большая Советская Энциклопедия (ТЯ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ТЯ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ТЯ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.