БСЭ БСЭ - Большая Советская Энциклопедия (ФА)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ФА)"
Описание и краткое содержание "Большая Советская Энциклопедия (ФА)" читать бесплатно онлайн.
Л. Д. Ландау (1937) предложил общую трактовку всех Ф. п. II рода, как точек изменения симметрии: выше точки перехода система обладает более высокой симметрией, чем ниже точки перехода. Например, в магнетике выше точки перехода направления элементарных магнитных моментов (спинов ) частиц распределены хаотически. Поэтому одновременный поворот всех спинов не меняет физических свойств системы. Ниже точки перехода спины имеют преимущественную ориентацию. Одновременный их поворот изменяет направление магнитного момента системы. Другой пример: в двухкомпонентном сплаве, атомы которого А и В расположены в узлах простой кубической кристаллической решётки , неупорядоченное состояние характеризуется хаотическим распределением атомов А и В по узлам решётки, так что сдвиг решётки на один период не меняет её свойств. Ниже точки перехода атомы сплава располагаются упорядоченно:... ABAB... Сдвиг такой решётки на период приводит к замене всех атомов А на В или наоборот. В результате установления порядка в расположении атомов симметрия решётки уменьшается.
Сама симметрия появляется и исчезает скачком. Однако величина, характеризующая асимметрию (параметр порядка), может изменяться непрерывно. При Ф. п. II рода параметр порядка равен нулю выше точки перехода и в самой точке перехода. Подобным образом ведёт себя, например, магнитный момент ферромагнетика, электрическая поляризация сегнетоэлектрика, плотность сверхтекучей компоненты в жидком 4 He, вероятность обнаружения атома А в соответствующем узле кристаллической решётки двухкомпонентного сплава и т.д.
Для Ф. п. II рода характерно отсутствие скачков плотности, концентрации, теплоты перехода. Но точно такая же картина наблюдается и в критической точке на кривой Ф. п. I рода (см. Критические явления ). Сходство оказывается очень глубоким. Вблизи критической точки состояние вещества можно характеризовать величиной, играющей роль параметра порядка. Например, в случае критической точки на кривой равновесия жидкость – пар это – отклонение плотности от среднего значения. При движении по критической изохоре со стороны высоких температур газ однороден, и эта величина равна нулю. Ниже критической температуры , вещество расслаивается на две фазы, в каждой из которых отклонение плотности от критической не равно нулю. Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой (флуктуации ), точно так же, как вблизи критической точки. С этим связаны многие критические явления при Ф. п. II рода: бесконечный рост магнитной восприимчивости ферромагнетиков и диэлектрической постоянной сегнетоэлектриков (аналогом является рост сжимаемости вблизи критической точки жидкость – пар), бесконечный рост теплоёмкости, аномальное рассеяние электромагнитных волн [световых в жидкости и паре (см. Опалесценция критическая ), рентгеновских в твёрдых телах], нейтронов в ферромагнетиках. Существенно меняются и динамические явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Например, вблизи критической точки жидкость – пар сужается линия рэлеевского рассеяния света , вблизи Кюри точки ферромагнетиков и Нееля точки антиферромагнетиков замедляется спиновая диффузия (см. Спиновые волны ) и т.д. Средний размер флуктуаций (радиус корреляции) R растет по мере приближения к точке Ф. п. II рода и становится в этой точке бесконечно большим.
Современные достижения теории Ф. п. II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять R за единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R – за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R. Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.
Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний . Например, вблизи критической точки жидкость – пар отношение зависит только от (здесь r- плотность, rк - критическая плотность, rж – плотность жидкости, rг – плотность газа, p – давление, pk – критическое давление, Кт – изотермическая сжимаемость ), причём вид зависимости при подходящем выборе масштаба один и тот же для всех жидкостей (см. Критические явления ).
Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.
Таблица критических размерностей термодинамических и кинетических величин
Величина Т - Тk Теплоемкость Восприимчивость* Магнитное поле Магнитный момент Ширина линии рэлеевского рассеяния Размерность -3 /2 3 /16 2 -5 /2 -1 /2 -3 /2* Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. Tk – критическая температура.
Дальнейшее развитие теории Ф. п. II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.
Деление Ф. п. на два рода несколько условно, т.к. бывают Ф. п. I рода с малыми скачками теплоёмкости и др. величин и малыми теплотами перехода при сильно развитых флуктуациях. Ф. п. – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.
Лит.: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Браут Р., Фазовые переходы, пер. с англ., М., 1967; Фишер М., Природа критического состояния, пер. с англ., М., 1968; Стенли Г., Фазовые переходы и критические явления, пер. с англ., М., 1973; Анисимов М. А., Исследования критических явлений в жидкостях, «Успехи физических наук», 1974, т. 114, в. 2; Паташинский А. З., Покровский В. Л., Флуктуационная теория фазовых переходов, М., 1975; Квантовая теория поля и физика фазовых переходов, пер. с англ., М., 1975 (Новости фундаментальной физики, вып. 6); Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер, с англ., М., 1975 (Новости фундаментальной физики, в. 5).
В. Л. Покровский.
Фазовый портрет
Фа'зовый портре'т, совокупность фазовых траекторий, характеризующая состояния и движения динамич. системы (см. Фазовой плоскости метод ).
Фазоинвертор
Фазоинве'ртор, электрическое устройство, преобразующее входное напряжение в два напряжения, сдвинутые по фазе на 180°. Простейший Ф. – электрический трансформатор с симметричной вторичной обмоткой, имеющей отвод от средней точки. Часто в качестве Ф. используют колебательный контур , у которого имеется отвод от средних точек в индуктивной или ёмкостной ветвях (от средней точки катушки индуктивности или общей точки двух последовательно включенных конденсаторов). В радиотехнических устройствах получили распространение ламповые, а позднее – транзисторные Ф. с разделённой нагрузкой (рис. ). В таких Ф. выходные сигналы на аноде (коллекторе) и катоде (эмиттере) имеют разную полярность (сдвинуты по фазе на 180°). Существуют и др. Ф., например собранные на лампе (двойном триоде) по схеме с общим катодом или с общей сеткой, а также на т. н. составных транзисторах. Ф. используют также в измерительной аппаратуре, устройствах вычислительной техники и др.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ФА)"
Книги похожие на "Большая Советская Энциклопедия (ФА)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ФА)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ФА)", комментарии и мнения людей о произведении.