БСЭ БСЭ - Большая Советская Энциклопедия (ФИ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ФИ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ФИ)" читать бесплатно онлайн.
Второе направление (Ф. системы электронов в кристалле) начало развиваться сразу после открытия электрона как электронная теория металлов и др. твёрдых тел. В этой теории электроны в металле рассматривались как заполняющий кристаллическую решётку газ свободных электронов, подобный обычному разреженному молекулярному газу, подчиняющемуся классической. статистике Больцмана. Электронная теория позволила дать объяснение законов Ома и Видемана – Франца (П. Друде ), заложила основы теории дисперсии света в кристаллах и др. Однако не все факты укладывались в рамки классической электронной теории. Так, не получила объяснения зависимость удельного сопротивления металлов от температуры, оставалось неясным, почему электронный газ не вносит заметного вклада в теплоёмкость металлов и т.д. Выход из создавшихся трудностей был найден лишь после построения квантовой механики.
Созданный Бором первый вариант квантовой теории был внутренне противоречивым: используя для движения электронов законы механики Ньютона, Бор в то же время искусственно накладывал на возможные движения электронов квантовые ограничения, чуждые классической Ф.
Достоверно установленная дискретность действия и её количественная мера – постоянная Планка h – универсальная мировая постоянная, играющая роль естественного масштаба явлений природы, требовали радикальной перестройки как законов механики, так и законов электродинамики. Классические законы справедливы лишь при рассмотрении движения объектов достаточно большой массы, когда величины размерности действия велики по сравнению с h и дискретностью действия можно пренебречь.
В 20-е гг. 20 в. была создана самая глубокая и всеобъемлющая из современных физических теорий – квантовая, или волновая, механика – последовательная, логически завершенная нерелятивистская теория движения микрочастиц, которая позволила также объяснить многие свойства макроскопических тел и происходящие в них явления. В основу квантовой механики легли идея квантования Планка – Эйнштейна – Бора и выдвинутая Л. де Бройлем гипотеза (1924), что двойственная корпускулярно-волновая природа свойственна не только электромагнитному излучению (фотонам), но и любым др. видам материи. Все микрочастицы (электроны, протоны, атомы и т.д.) обладают наряду с корпускулярными и волновыми свойствами: каждой из них можно поставить в соответствие волну (длина которой равна отношению постоянной Планка h к импульсу частицы, а частота – отношению энергии частицы к h ). Волны де Бройля описывают свободные частицы. В 1927 впервые наблюдалась дифракция электронов, экспериментально подтвердившая наличие у них волновых свойств. Позднее дифракция наблюдалась и у др. микрочастиц, включая молекулы (см. Дифракция частиц ).
В 1926 Шрёдингер, пытаясь получить дискретные значения энергии атома из уравнения волнового типа, сформулировал основное уравнение квантовой механики, названное его именем. В. Гейзенберг и Борн (1925) построили квантовую механику в др. математической форме – т. н. матричную механику.
В 1925 Дж. Ю. Уленбек и С. А. Гаудсмит на основании экспериментальных (спектроскопических) данных открыли существование у электрона собственного момента количества движения – спина (а следовательно, и связанного с ним собственного, спинового, магнитного момента), равного 1 /2 . (Величина спина обычно выражается в единицах = h /2p, которая, как и h, называется постоянной Планка; в этих единицах спин электрона равен 1 /2 .) В. Паули записал уравнение движения нерелятивистского электрона во внешнем электромагнитном поле с учётом взаимодействия спинового магнитного момента электрона с магнитным полем. В 1925 он же сформулировал т. н. принцип запрета, согласно которому в одном квантовом состоянии не может находиться больше одного электрона (Паули принцип ). Этот принцип сыграл важнейшую роль в построении квантовой теории систем многих частиц, в частности объяснил закономерности заполнения электронами оболочек и слоев в многоэлектронных атомах и т. о. дал теоретическое обоснование периодической системе элементов Менделеева.
В 1928 П. А. М. Дирак получил квантовое релятивистское уравнение движения электрона (см. Дирака уравнение ), из которого естественно вытекало наличие у электрона спина. На основании этого уравнения Дирак в 1931 предсказал существование позитрона (первой античастицы ), в 1932 открытого К. Д. Андерсоном в космических лучах . [Античастицы других структурных единиц вещества (протона и нейтрона) – антипротон и антинейтрон были экспериментально открыты соответственно в 1955 и 1956.]
Параллельно с развитием квантовой механики шло развитие квантовой статистики – квантовой теории поведения физических систем (в частности, макроскопических тел), состоящих из огромного числа микрочастиц. В 1924 Ш. Бозе , применив принципы квантовой статистики к фотонам – частицам со спином 1, вывел формулу Планка распределения энергии в спектре равновесного излучения, а Эйнштейн получил формулу распределения энергии для идеального газа молекул (Бозе – Эйнштейна статистика ). В 1926 П. А. М. Дирак и Э. Ферми показали, что совокупность электронов (и др. одинаковых частиц со спином 1 /2 ), для которых справедлив принцип Паули, подчиняется др. статистике – Ферми – Дирака статистике . В 1940 Паули установил связь спина со статистикой.
Квантовая статистика сыграла важнейшую роль в развитии Ф. конденсированных сред и в первую очередь в построении Ф. твёрдого тела. На квантовом языке тепловые колебания атомов кристалла можно рассматривать как совокупность своего рода «частиц», точнее квазичастиц , – фононов (введены И. Е. Таммом в 1929). Такой подход объяснил, в частности, спад теплоёмкости металлов (по закону T 3 ) c понижением температуры Т в области низких температур, а также показал, что причина электрического сопротивления металлов – рассеяние электронов не на ионах, а в основном на фононах. Позднее были введены др. квазичастицы. Метод квазичастиц оказался весьма эффективным для исследования свойств сложных макроскопических систем в конденсированном состоянии.
В 1928 А. Зоммерфельд применил функцию распределения Ферми – Дирака для описания процессов переноса в металлах. Это разрешило ряд трудностей классической теории и создало основу для дальнейшего развития квантовой теории кинетических явлений (электро- и теплопроводности, термоэлектрических, гальваномагнитных и др. эффектов) в твёрдых телах, особенно в металлах и полупроводниках .
Согласно принципу Паули, энергия всей совокупности свободных электронов металла даже при абсолютном нуле отлична от нуля. В невозбуждённом состоянии все уровни энергии, начиная с нулевого и кончая некоторым максимальным уровнем (уровнем Ферми), оказываются занятыми электронами. Эта картина позволила Зоммерфельду объяснить малость вклада электронов в теплоёмкость металлов: при нагревании возбуждаются только электроны вблизи уровня Ферми.
В работах Ф. Блоха , Х. А. Бете и Л. Бриллюэна (1928–34) была разработана теория зонной энергетической структуры кристаллов, которая дала естественное объяснение различиям в электрических свойствах диэлектриков и металлов. Описанный подход, получивший название одноэлектронного приближения, имел дальнейшее развитие и широкое применение, особенно в Ф. полупроводников.
В 1928 Я. И. Френкель и Гейзенберг показали, что в основе ферромагнетизма лежит квантовое обменное взаимодействие (которое на примере атома гелия было в 1926 рассмотрено Гейзенбергом); в 1932–33 Л. Неель и независимо Л. Д. Ландау предсказали антиферромагнетизм .
Открытия сверхпроводимости Камерлинг-Оннесом (1911) и сверхтекучести жидкого гелия П. Л. Капицей (1938) стимулировали развитие новых методов в квантовой статистике. Феноменология. теория сверхтекучести была построена Ландау (1941); дальнейшим шагом явилась феноменология, теория сверхпроводимости Ландау и В. Л. Гинзбурга (1950).
В 50-х гг. были развиты новые мощные методы расчётов в статистической квантовой теории многочастичных систем, одним из наиболее ярких достижений которых явилось создание Дж. Бардином , Л. Купером , Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) микроскопической теории сверхпроводимости.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ФИ)"
Книги похожие на "Большая Советская Энциклопедия (ФИ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ФИ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ФИ)", комментарии и мнения людей о произведении.