БСЭ БСЭ - Большая Советская Энциклопедия (ФО)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ФО)"
Описание и краткое содержание "Большая Советская Энциклопедия (ФО)" читать бесплатно онлайн.
Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, Введение (§§ 00–09).
Формалин
Формали'н, формоль, водный (обычно 37–40% -ный) раствор формальдегида , содержащий 4–12% метилового спирта в качестве стабилизатора; бесцветная жидкость со своеобразным острым запахом. При длительном хранении (особенно на холоду) Ф. мутнеет вследствие выпадения белого осадка – параформальдегида . Применяют как удобный источник формальдегида, например в производстве поливинилформаля (см. Поливинилацетали ), как антисептическое и дезодорирующее средство, например для дезинфекции помещений, одежды, инструментов, обработки рук, спринцевании, для сохранения анатомических препаратов, дубления кожи, как фунгицид для протравливания семян, клубней и семенных корнеплодов перед посевом или посадкой. Входит в состав формальдегидной мази и формидрона, применяемых при повышенной потливости; лизоформа, используемого для спринцеваний, дезинфекции рук и помещений. Ф. среднетоксичен для человека и теплокровных животных.
Формальдегид
Формальдеги'д (от лат. formica – муравей), муравьиный альдегид, CH2 O, первый член гомологического ряда алифатических альдегидов ; бесцветный газ с резким запахом, хорошо растворимый в воде и спирте, t кип – 19 °С. В промышленности Ф. получают окислением метилового спирта или метана кислородом воздуха. Ф. легко полимеризуется (особенно при температурах до 100 °С), поэтому его хранят, транспортируют и используют главным образом в виде формалина и твёрдых низкомолекулярных полимеров – триоксана (см. Триоксиметилен ) и параформа (см. Параформальдегид ).
Ф. очень реакционноспособен; многие реакции его лежат в основе промышленных методов получения ряда важных продуктов. Так, при взаимодействии с аммиаком Ф. образует уротропин (см. Гексаметилентетрамин ), с мочевиной – мочевино-формальдегидные смолы , с меламином – меламино-формальдегидные смолы , с фенолами – феноло-формальдегидные смолы (см. Феноло-альдегидные смолы ), с фенол- и нафталинсульфокислотами – дубящие вещества, с кетеном – b-пpoпиолактон . Ф. используют также для получения поливинилформаля (см. Поливинилацетали ), изопрена , пентаэритрита , лекарственных веществ, красителей, для дубления кожи, как дезинфицирующее и дезодорирующее средство. Полимеризацией Ф. получают полиформальдегид . Ф. токсичен; предельно допустимая концентрация в воздухе 0,001 мг/л.
Формальная арифметика
Форма'льная арифме'тика, формулировка арифметики в виде формальной (аксиоматической) системы (см. Аксиоматический метод ). Язык Ф. а. содержит константу 0, числовые переменные, символ равенства, функциональные символы +, •, ' (прибавление 1) и логические связки (см. Логические операции ). Постулатами Ф. а. являются аксиомы и правила вывода исчисления предикатов (классического или интуиционистского в зависимости от того, какая Ф. а. рассматривается), определяющие равенства для арифметических операций:
а + 0 = а , а + b’ = (а + b ),
а •0 = 0, а •b’ = (а •b ) + а ,
аксиомы Пеано:
ù(а’ = 0), a’ = b’ ® а = b ,
(a = b & а = с ) ® b = с , а = b ®a ' = b '
и схема аксиом индукции:
А (0) & " x (А (х ) ® А (x ')) ® " xa (x ).
Средства Ф. а. достаточны для вывода теорем элементарной теории чисел. В настоящее время, по-видимому, неизвестно ни одной содержательной теоретико-числовой теоремы, доказанной без привлечения средств анализа, которая не была бы выводима в Ф. а. В Ф. а. изобразимы рекурсивные функции и доказуемы их определяющие равенства. Это позволяет, в частности, формулировать суждения о конечных множествах. Более того, Ф. а. эквивалентна аксиоматической теории множеств Цермело – Френкеля без аксиомы бесконечности: в каждой из этих систем может быть построена модель другой.
Ф. а. удовлетворяет условиям обеих теорем Гёделя о неполноте. В частности, имеются такие полиномы Р , Q от 9 переменных, что формула " x 1 ... "x 9 (P ¹ Q ) невыводима, хотя и выражает истинное суждение, а именно непротиворечивость Ф. а. Поэтому неразрешимость диофантова уравнения Р - Q = 0 недоказуема в Ф. а. Непротиворечивость Ф. а. доказана с помощью трасфинитной индукции до ординала e0 (наименьшее решение уравнения we = e). Поэтому схема индукции до e0 недоказуема в Ф. а., хотя там доказуема схема индукции до любого ординала a < e0 . Класс доказуемо рекурсивных функций Ф. а. (т. е. частично рекурсивных функций, общерекурсивность которых может быть установлена средствами Ф. а.) совпадает с классом ординально рекурсивных функций с ординалами < e0 .
Не все теоретико-числовые предикаты выразимы в Ф. а.: примером является такой предикат T, что для любой замкнутой арифметической формулы А имеет место Т (éА ù) « А, где éА ù – номер формулы А в некоторой фиксированной нумерации, удовлетворяющей естественным условиям. Присоединение к Ф. а. символа Т с аксиомами типа
Т (éА & B ù) « Т (éА ù) & Т (éB ù),
выражающими его перестановочность с логическими связками, позволяет доказать непротиворечивость Ф. а. Похожая конструкция (но уже внутри Ф. а.) доказывает, что схему индукции нельзя заменить никаким конечным множеством аксиом. Ф. а. корректна и полна относительно формул вида $x 1 ... $xk (P = Q ); замкнутая формула из этого класса доказуема тогда и только тогда, когда она истинна. Так как этот класс содержит алгоритмически неразрешимый предикат, отсюда следует, что проблема выводимости в Ф. а. алгоритмически неразрешима.
При задании Ф. а. в виде генценовской системы осуществима нормализация выводов, причём нормальный вывод числового равенства состоит только из числовых равенств. На этом пути было получено первое доказательство непротиворечивости Ф. а. Нормальный вывод формулы с кванторами может содержать сколь угодно сложные формулы. Полная подформульность достигается после замены схемы индукции на со-правило, позволяющее вывести В ® "xA (x ) из В ® A (0), B ® A (1),... Понятие w-вывода (т. е. вывода с w-правилом) высоты < e0 выразимо в Ф. а., поэтому переход к w-выводам позволяет устанавливать в Ф. а. многие метаматематические теоремы, в частности полноту относительно формул вида $x1 ... $xk (P = Q ) и ординальную характеристику доказуемо рекурсивных функций.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; Hilbert D., Bernays P., Grundlagen der Mathematik, 2 Aufl., Bd 1–2, В., 1968–70.
Г. Е. Минц.
Формальная грамматика
Форма'льная грамма'тика, в языкознании, одно из средств строгого описания естественных языков; один из разделов математической лингвистики (см. Грамматика формальная ).
Формальная логика
Форма'льная ло'гика, наука о мышлении, предметом которой является исследование умозаключений и доказательств с точки зрения их формы и в отвлечении от их конкретного содержания. Ф. л. – базисная наука; её идеи и методы используются как в повседневной практике, например в качестве средства предотвращения логических ошибок, так и в особенности в теории для логического анализа научного знания. См. Логика .
Формальная система
Форма'льная систе'ма, неинтерпретированное исчисление , класс выражений (формул) которого задаётся обычно индуктивно – посредством задания исходных («элементарных», или «атомарных») формул и правил образования (построения) формул, а подкласс доказуемых формул (теорем) – посредством задания системы аксиом и правил вывода (преобразования) теорем из аксиом и уже доказанных теорем. Термин «Ф. с.» имеет многочисленные синонимы (иногда, впрочем, этими терминами обозначают родственные, но не совпадающие понятия): формальная теория, формальная математика, формализм, формальное исчисление, абстрактное исчисление, синтаксическая система, аксиоматическая система, логистическая система, формализованный язык , формальная логика , кодификат, дедуктивная система и др.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ФО)"
Книги похожие на "Большая Советская Энциклопедия (ФО)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ФО)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ФО)", комментарии и мнения людей о произведении.