БСЭ БСЭ - Большая Советская Энциклопедия (ХА)
Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ХА)"
Описание и краткое содержание "Большая Советская Энциклопедия (ХА)" читать бесплатно онлайн.
Ха'ра-Балга'с Карабалгасун, развалины г. Орду-Балык — столицы (8—9 вв.) Уйгурского каганата, разрушенной енисейскими кыргызами в 840. Расположены на левом берегу р. Орхон, в 15 км к С. от монастыря Эрдэни-дзу (МНР). Описаны Н. М. Ядринцевым (1889), В. В. Радловым (1891), исследованы советско-монгольской историко-этнографической экспедицией под руководством С. В. Киселева (1949). Вокруг Х.-Б. прослежены остатки пригородов, усадеб, каналов и следы пашен. Город имел строгую планировку; центральная часть окружена валами, частично сохранились сырцовые стены, донжон цитадели и крепость. Открыты остатки дворца, храмовой комплекс, ремесленная мастерская, гранитная стела, увенчанная изображением дракона с надписями в честь каганов 9 в.
Лит.: Киселев С. В., Древние города Монголии, «Советская археология», 1957, № 2.
Харабали
Харабали', город (с 1974), центр Харабалинского района Астраханской области РСФСР. Расположен на левобережье Волги, в 142 км к С.-З. от Астрахани, у ж.-д. станции Харабалинская (на линии Верхний Баскунчак — Астрахань). Консервный и молочный заводы, птицефабрика. Откормочный совхоз.
«Харавги»
«Харавги'» («Charauge» — «Рассвет»), ежедневная газета, ЦО Прогрессивной партии трудового народа Кипра. Основана в 1956, издаётся на греческом языке. Выходит в Никосии. Тираж (1976) 13,5 тыс. экз.
Харадж
Хара'дж (араб.), поземельный налог в странах Ближнего и Среднего Востока. В государстве Сасанидов — поземельный налог (хараг), введённый налоговой реформой Кавада I — Хосрова I Ануширвана. В Халифате Х. сначала взимался с немусульманского, а затем и с мусульманского населения, владевшего землями. До Аббасидов Х. преимущественно взимался с единицы площади, а со 2-й половины 8 в. в некоторых частях Халифата возобладало обложение пропорционально урожаю. В Османской империи к концу 18 в. Х. слился с джизьей . В Египте в 1907 Х. был заменен подоходным налогом.
Харакири
Хараки'ри, сэппуку (япон. — вспарывание живота), в Японии в эпоху феодализма и позднее вид самоубийства путём вспарывания живота. Принятая в среде самураев, эта форма самоубийства совершалась либо по приговору как наказание, либо добровольно (в тех случаях, когда была затронута «честь» самурая, в знак верности самурая своему сюзерену и т.д.).
Харакс
Ха'ракс, римский военный лагерь-крепость на мысе Ай-Тодор в Крыму. Основан в 1 в. при императоре Веспасиане для защиты античных городов Северного Причерноморья (особенно Херсонеса ) от скифов и др. племён. Раскапывался с середины 19 в., в 1931—35 В. Д. Блаватским. Площадь Х. — 4,5 га ; за двумя рядами стен располагались термы, гимнасий, водоём с мозаичным полом, водопровод из глиняных труб, дома, за внешней стеной — святилище 2 в. По клеймам на черепице и кирпичах установлены название частей гарнизона Х. После эвакуации римских войск Х. оставался поселением рыболовов, земледельцев и ремесленников, оставивших некрополь 4 в.
Лит.: Блаватский В. Д., Харакс, в кн.: Материалы и исследования по археологии СССР, № 19, М. — Л., 1951.
Характер (в математике)
Хара'ктер в математике, функция специального вида, применяемая в чисел теории и теории групп .
В теории чисел Х. называют функцию c(n ) ¹ 0, определённую для всех целых чисел n и такую, что: 1) c(nm ) = c(n )c(m ) для всех n и m , 2) существует такое целое число k (период), что c(n + k ) = c(n ) для всех n . Наименьший из положительных периодов называется основным модулем характера c, а характер с основным модулем k обозначается c(n , k ). Примерами Х. являются: 1) главный Х. по модулю k ; c(n , k ) = 0, если (n , k ) > 1, и c(n , k ) = 1, если (n , k ) = 1, 2) c(n , k ) = 0, если (n , k ) > 1, c(n , k ) = , если (n , k ) = 1, — Якоби символ , k > 1 — нечётное натуральное число. Х. степени q по модулю k называется Х., равный единице для чисел и, для которых разрешимо сравнение xq º a (modk ) (см. Степенной вычет ). Такие Х. играют важную роль в теории алгебраических чисел. Многие вопросы теории чисел (например, вопрос о распределении простых чисел) связаны с изучением функций L (s c) = (т. н. L -функций Дирихле). Частным случаем таких функций является дзета-функция x(s ), для которой Х (n ) º 1.
Условие периодичности c(n + k ) = c(n ) позволяет трактовать характеры c(n , k ) при фиксированном k > 1 как функции, заданные на приведённой системе вычетов по модулю k , рассматриваемой как группа по умножению, и удовлетворяющие там функциональному уравнению:
c(ab ) = c(a ) c(b ). (1)
Такая трактовка понятия Х. позволяет непосредственно перенести его на любую конечную коммутативную группу G . При этом, если n — порядок, e — единица, a — произвольный элемент группы G , то [c(a )] n = c(a n ) = c(e ) = 1, т. е. c(a ) — корень n -й степени из единицы: в частности
|c(a )| º 1. (2)
Х. произвольной коммутативной группы G (не обязательно конечной) называют всякую функцию c(а ), определённую на G и удовлетворяющую условиям (1) и (2). Если G — топологическая группа, то требуют ещё, чтобы c(а ) была непрерывна.
Совокупность всех Х. группы G образует группу G1 , относительно обыкновенного умножения Х. как функций. Если G конечна, то G1 изоморфна G . Для бесконечных групп это уже, вообще говоря, неверно. Например, если G — группа целых чисел, то её Х. служат c(n ) = ein j , где (j — любое действительное число, приведённое по модулю 2p, так что группа Х. совпадает с группой вращений окружности. В свою очередь, группа Х. для группы вращений окружности совпадает с группой целых чисел [каждый такой Х. имеет вид: c(j) = ein j ]. Эта двойственность была обобщена Л. С. Понтрягиным на широкий класс групп и применена к решению важных проблем топологии (т. н. проблем двойственности для компактов).
Лит.: Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973; Чудаков Н. Г., Введение в теорию L-функций Дирихле, М. — Л., 1947; Ленг С., Алгебра, пер. с англ., М., 1968; Боревич З. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972.
Характер (в психологии)
Хара'ктер (от греч. charakter — отпечаток, признак, отличительная черта) в психологии, целостный и устойчивый индивидуальный склад душевной жизни человека, её тип, «нрав» человека, проявляющийся в отдельных актах и состояниях его психической жизни, а также в его манерах, привычках, складе ума и свойственном человеку круге эмоциональной жизни. Х. человека выступает в качестве основы его поведения и составляет предмет изучения характерологии .
Характер (литератур.)
Хара'ктер литературный, образ человека, очерченный с известной полнотой и индивидуальной определённостью, через который раскрываются как обусловленный данной общественно-исторической ситуацией тип поведения (поступки, мысли, переживания, речевая деятельность), так и присущая автору нравственно-эстетическая концепция человеческого существования. Художественный Х. являет собой органическое единство общего, повторяющегося и индивидуального, неповторимого; объективного (социально-психологическая реальность человеческой жизни, послужившая прообразом для литературного Х.) и субъективного (осмысление и оценка прообраза автором). В результате Х. в искусстве предстаёт «новой реальностью», художественно «сотворённой» личностью, которая, отображая реальный человеческий тип, идеологически проясняет его. Именно концептуальность литературного образа человека отличает понятие Х. в литературоведении от значений этого термина в психологии, философии, социологии.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ХА)"
Книги похожие на "Большая Советская Энциклопедия (ХА)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ХА)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ХА)", комментарии и мнения людей о произведении.




























