БСЭ БСЭ - Большая Советская Энциклопедия (ХИ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ХИ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ХИ)" читать бесплатно онлайн.
Химическая физика
Хими'ческая фи'зика, научная область, пограничная между химией и новыми разделами физики. Возникновение Х. ф. было подготовлено многими выдающимися открытиями в физике начала 20 в. (см. Атомная физика , Квантовая механика ). Как следствие быстрого прогресса физики появились новые возможности теоретического и экспериментального решения химических проблем, а это, в свою очередь, привело к расширению исследований с применением физически методов. Складывались современные представления о строении и электрических свойствах атомов и молекул, природе межмолекулярных сил и элементарного акта химического взаимодействия. После открытия нем. учёным М. Боденштейном неразветвлённых цепных реакций (1913) и установления В. Нернстом принципиального химического механизма таких реакций начался новый этап развития кинетики химической . Механизм химических реакций рассматривается как сложная совокупность элементарных химических процессов с участием молекул, атомов, свободных радикалов, ионов, возбуждённых частиц. Открыты и изучены ранее неизвестные типы химических реакций, например цепные разветвленные реакции (Н. Н. Семенов , С. Хиншелвуд ), и явления, свойственные этому типу реакций; создана теория процессов горения и взрывов, базирующаяся на химической кинетике (Семенов).
Впервые термин «Х. ф.» в понимании, близком к современному, ввёл немецкий учёный А. Эйкен, опубликовав «Курс химической физики» (1930). До этого (1927) вышла книга В. Н. Кондратьева, Н. Н. Семенова и Ю. Б. Харитона «Электронная химия», название которой в известной мере раскрывает смысл термина «Х. ф.». В 1931 был организован институт химической физики АН СССР; с 1933 в США издаётся «Журнал химической физики» (Journal of Chemical Physics).
Уже с 20—30-х гг. к Х. ф. стали относить работы по изучению строения электронной оболочки атома; квантово-механической природы химических сил; строения и свойств молекул, кристаллов и жидкостей; проблем химической кинетики — природы элементарных актов химического взаимодействия, свойств свободных радикалов, квантовомеханической теории реакционной способности соединений, фотохимических реакций и реакций в разрядах, теории горения и взрывов.
Современный этап в развитии Х. ф. характеризуется широким применением многочисленных весьма эффективных физических методов, дающих большой объём информации о структуре атомов и молекул и механизмах химических реакций. Это спектрально-оптические методы, масс-спектрометрия, метод молекулярных пучков, рентгеноструктурный анализ, электронная микроскопия, электромагнитные методы определения поляризуемости, магнитной восприимчивости, электронография и ионография, нейтронография и нейтроно-спектроскопические методы, электронный парамагнитный резонанс, ядерный магнитный резонанс, ядерный квадрупольный резонанс, двойные резонансы, метод спинового эха, химическая поляризация электронов и ядер, гамма-резонансная спектроскопия, методы установления структурных и динамических свойств молекул с помощью мезонов и позитронов, методы определения импульсов электронов в молекулах, импульсные методы изучения быстрых процессов (импульсный радиолиз, импульсный, в том числе лазерный, фотолиз), ударно-волновые и др. методы.
Растет значение квантовой химии , применение ЭВМ для расчёта электронного строения и свойств химических соединений и выполнения др. расчётов, необходимых для развития теории химических реакций.
Большое внимание уделяется изучению механизмов элементарных актов химических превращения в газовой и конденсированной фазах. Применительно к газофазным реакциям интенсивно исследуется кинетика неравновесных процессов, важных в условиях высоких температур и глубокого вакуума, выясняется роль колебательного возбуждения молекул. Разрабатывается теория туннельных переходов в кинетике химических реакций, устанавливаются критерии, характеризующие температуры, ниже которых туннельные переходы преобладают над барьерными. Изучаются особенности процессов при температурах, близких к абсолютному нулю. Развивается химия низких температур (низкотемпературные реакции протекают направленно, с весьма высоким выходом целевых продуктов, с большими, иногда взрывными, скоростями).
Интенсивно ведутся работы по химии высоких энергий — области Х. ф., связанной с исследованиями кинетики, механизма и практических приложений процессов, в которых энергии отдельных атомов, молекул, радикалов превышают энергию теплового движения, а зачастую и энергию химических связей.
Важным разделом химико-физических исследований является фотохимия , имеющая большое значение для теории химических процессов, решения проблем фотосинтеза, фоторецепции, фотографии, светостабилизации полимерных материалов. С помощью современных импульсных методов исследуются весьма быстрые фотопроцессы, что важно для установления механизма элементарных реакций. Изучается механизм фотохромизма , знание которого необходимо в связи с широким применением фотохромных материалов в технике.
Ведутся теоретические и прикладные исследования в области низкотемпературной плазмы, разрабатываются общие принципы неравновесной кинетики химических реакций в плазме и научные основы плазмо-химической технологии (см. Плазмохимия ).
Сравнительно новое направление Х. ф. — изучение химических превращений конденсированных веществ в результате их сжатия под действием ударных волн. Изучается кинетика быстрых неизотермических реакций в условиях адиабатического расширения и сжатия газов.
Возрастает роль и значение работ по ядерной химии, которая занимается изучением химических последствий ядерных процессов (ядерные реакции, радиоактивный распад), исследованиями в области химии новых трансурановых элементов, а также своеобразных систем (в частности, мезоатомов), возникающих при воздействии на вещество позитронов и мезонов. Развиваются методы радиационной химии .
Одним из фундаментальных следствий теории цепных процессов является вывод об образовании высоких концентраций свободных атомов и радикалов в ходе цепных разветвленных реакций. Этот вывод лежит в основе многочисленных теоретических и экспериментальных работ, имеющих большое практическое значение. Развиваются исследования цепных процессов с энергетическими разветвлениями цепи. На основе таких процессов создаются химические лазеры. Новым научным направлением становится изучение влияния магнитных полей на механизм реакций с участием свободных радикалов. Сохраняет своё большое теоретическое и практическое значение изучение теплового взрыва, горения и детонации.
Большое внимание уделяется изучению кинетики и механизма химических реакций в твёрдом теле (см. также Топохимические реакции ) и химико-физическим аспектам катализа . В области гетерогенного катализа Х. ф. сосредоточивает внимание на изучении свойств частиц, адсорбированных на поверхности катализатора, установлении структуры и распределения активных центров на поверхности твёрдых тел, разработке элементарного акта гетерогенного катализа. Перспективным объектом химико-физического изучения становится металлокомплексный катализ, приближающийся по эффективности к ферментативному.
В области электрохимии Х. ф. разрабатывает квантовохимическое обоснование особенностей электрохимических реакций, занимается экспериментальным изучением механизма элементарного акта электродных реакций, а также процессов в объёме раствора, сопровождающихся переносом электронов, исследованием сольватированных электронов, теоретическим анализом темновой и фотоэмиссии электронов из металла в раствор.
Химико-физические методы и подходы становятся эффективным инструментом научных исследований во всех разделах химической науки. Современная физическая химия также во всё возрастающей степени использует при решении химических проблем новейшие достижения физики и физические методы исследования.
Лит.: Кондратьев В. Н., Семенов Н. Н., Харитон Ю. Б., Электронная химия, М. — Л., 1927; Эйкен А,, Курс химической физики, пер. с нем., вып. 1—3, М. — Л., 1933—1935; Семенов Н. Н., Кондратьев В. Н., Эмануэль Н. М., Химическая физика в Академии наук СССР, «Вестник Академии наук СССР», 1974, № 2, с. 49; Семенов Н. Н., Химическая физика. (Физические основы химической кинетики), Черноголовка, 1975.
Н. М. Эмануэль.
Химически стойкий бетон
Хими'чески сто'йкий бето'н, общее название группы бетонов , сохраняющих свои свойства в условиях воздействия химически агрессивных веществ (кислот, щелочей, органических растворителей и др.). В качестве вяжущих в Х. с. б. используют химически стойкие органические полимеры , жидкое стекло, расплавленную серу, битумные и пековые составы; заполнителями служат песок, а также щебень гранита, базальта, кварца, маршалита и др. горных пород. Х. с. б. применяют для изготовления строительных конструкций, технологического оборудования предприятий химической промышленности, при строительстве очистных сооружений и т.п. Основные виды Х. с. б. — кислотоупорный бетон, полимербетон , асфальтобетон .
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ХИ)"
Книги похожие на "Большая Советская Энциклопедия (ХИ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ХИ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ХИ)", комментарии и мнения людей о произведении.