БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ЭЛ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ЭЛ)" читать бесплатно онлайн.
Наиболее важное квантовое свойство всех Э. ч. — их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч. — это специфические кванты материи, более точно — кванты соответствующих физических полей (см. ниже). Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, например, процесс рождения p+ -мезона при столкновении двух протонов (р + р ® р + n+ p+ ) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, например, два g-кванта (е+ +е- ® g + g). Но и процессы упругого рассеяния частиц, например е- +p ® е- + р, также связаны с поглощением начальных частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в котором продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на атом в основном состоянии и фотон. Примерами распадов Э. ч. могут служить: ; p+ ® m+ + v m ; К+ ® p+ + p0 (знаком «тильда» над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).
Различные процессы с Э. ч. заметно отличаются по интенсивности протекания. В соответствии с этим взаимодействия Э. ч. можно феноменологически разделить на несколько классов: сильные, электромагнитные и слабые взаимодействия. Все Э. ч. обладают, кроме того, гравитационным взаимодействием.
Сильные взаимодействия выделяются как взаимодействия, которые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи Э. ч. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.
Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь Э. ч. заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.
Слабые взаимодействия, как показывает само название, вызывают очень медленно протекающие процессы с Э. ч. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады т. н. квазистабильных Э. ч. Времена жизни этих частиц лежат в диапазоне 10-8 — 10-10 сек, тогда как типичные времена для сильных взаимодействий Э. ч. составляют 10-23 —10-24 сек.
Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае Э. ч. на характерных расстояниях ~10-13 см дают чрезвычайно малые эффекты из-за малости масс Э. ч.
Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10-2 : l0-10 :10-38 . Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии (см. Симметрия в физике), которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.
В зависимости от участия в тех или иных видах взаимодействий все изученные Э. ч., за исключением фотона, разбиваются на две основные группы: адроны (от греческого hadros — большой, сильный) и лептоны (от греческого leptos — мелкий, тонкий, лёгкий). Адроны характеризуются прежде всего тем, что они обладают сильными взаимодействиями, наряду с электромагнитными и слабыми, тогда как лептоны участвуют только в электромагнитных и слабых взаимодействиях. (Наличие общих для той и другой группы гравитационных взаимодействий подразумевается.) Массы адронов по порядку величины близки к массе протона (т р ); минимальную массу среди адронов имеет p-мезон: т p »м 1/7×т р . Массы лептонов, известных до 1975—76, были невелики (0,1 m p ), однако новейшие данные, видимо, указывают на возможность существования тяжёлых лептонов с такими же массами, как у адронов. Первыми исследованными представителями адронов были протон и нейтрон, лептонов — электрон. Фотон, обладающий только электромагнитными взаимодействиями, не может быть отнесён ни к адронам, ни к лептонам и должен быть выделен в отд. группу. По развиваемым в 70-х гг. представлениям фотон (частица с нулевой массой покоя) входит в одну группу с очень массивными частицами — т. н. промежуточными векторными бозонами, ответственными за слабые взаимодействия и пока на опыте не наблюдавшимися (см. раздел Элементарные частицы и квантовая теория поля).
Характеристики элементарных частиц. Каждая Э. ч., наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель — единицу измерения; об этих числах говорят как о квантовых числах Э. ч. и задают только их, опуская единицы измерения.
Общими характеристиками всех Э. ч. являются масса (m ), время жизни (t), спин (J ) и электрический заряд (Q ). Пока нет достаточного понимания того, по какому закону распределены массы Э. ч. и существует ли для них какая-то единица измерения.
В зависимости от времени жизни Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5×1021 лет), протон (t > 2×1030 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10-20 сек (для свободного нейтрона даже ~ 1000 сек ). Резонансами называются Э. ч., распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10-23 —10-24 сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв ) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений — ~10-20 сек.
Спин Э. ч. является целым или полуцелым кратным от величины . В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина Э. ч. определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули , 1940). Частицы полуцелого спина подчиняются Ферми — Дирака статистике (отсюда название фермионы ), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, «запрещает» двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип ). Частицы целого спина подчиняются Бозе — Эйнштейна статистике (отсюда название бозоны ), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства Э. ч. оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми — Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева .
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ЭЛ)"
Книги похожие на "Большая Советская Энциклопедия (ЭЛ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ЭЛ)", комментарии и мнения людей о произведении.