БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ЭЛ)"
Описание и краткое содержание "Большая Советская Энциклопедия (ЭЛ)" читать бесплатно онлайн.
Если Э.-д. п. получают вплавлением примесей в монокристаллический полупроводник (например, акцепторной примеси в кристалл с проводимостью n -типа), то переход от n- к р -области происходит скачком (резкий Э.-д. п.). Если используется диффузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в котором постепенно изменяют содержание и характер примесей. Получил распространение метод ионного внедрения примесных атомов, позволяющий создавать Э.-д. п. заданного профиля.
Лит.: Стильбанс Л. С., Физика полупроводников, М., 1967; Пикус Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М., 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников, М., 1977.
Э. М. Эпштейн.
Рис. 1. Схема p-n -перехода: чёрные кружки — электроны; светлые кружки — дырки.
Рис. 2. Вольтамперная характеристика р — n-перехода: U — приложенное напряжение; I - ток через переход; Is — ток насыщения; Unp — напряжение пробоя.
Электронное зеркало
Электро'нное зе'ркало, электрическая или магнитная система, отражающая пучки электронов и предназначенная либо для получения с помощью таких пучков электроннооптических изображений, либо для изменения направления движения электронов. В значительной своей части Э. з. — системы, симметричные относительно некоторой оси (см. Электронная и ионная оптика ). Электростатические осесимметричные Э. з. (рис. 1 ) используют для создания правильных электроннооптических изображений объектов. Если последний электрод такого Э. з. сплошной и электроны меняют направление движения непосредственно вблизи его поверхности, то можно получить увеличенное изображение микрорельефа этой поверхности. В зеркальном электронном микроскопе используется именно это свойство Э. з. Цилиндрические Э. з. с «двухмерным» (оно не зависит от координаты х ) электрическим (рис. 2 ) или магнитным полем применяют для изменения направления электронных пучков, причем для электронов, движущихся в средней плоскости зеркала, угол падения равен углу отражения, подобно тому как это имеет место при отражении луча света от оптического зеркала. Т. н. трансаксиальные Э. з. (рис. 3 , 4 ) отличаются малыми аберрациями (погрешностями изображений) в направлении, параллельном средней плоскости Э. з.
Лит.: Глазер В., Основы электронной оптики, пер. с нем., М., 1957; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968.
В. М. Кельман, И. В. Родникова.
Рис. 3. Электростатическое трансаксиальное электронное зеркало: 1 и 2 — электроды, находящиеся под потенциалами V1 и V2; R — радиус кривизны зазора между электродами; плоскость xz совмещена со средней плоскостью зеркала.
Рис. 4. Отражение пучка электронов в средней плоскости трансаксиального электростатического электронного зеркала. Сплошными кривыми показаны сечения эквипотенциальных поверхностей средней плоскостью зеркала; пунктирная кривая - эффективная поверхность отражения электронного зеркала, соответствующая поверхности отражения его светооптического аналога - зеркала З.
Рис. 1. Осесимметричные двухэлектродные электронные зеркала: V1 и V2 - потенциалы электродов; тонкие линии - сечения эквипотенциальных поверхностей плоскостью рисунка; линии со стрелками - траектории электронов с разной энергией. Зеркала а и б всегда рассеивающие; зеркала в, г и д могут быть как рассеивающими, так и собирающими.
Рис. 2. Электростатическое цилиндрическое электронное зеркало: 1 и 2 — электроды, потенциалы которых соответственно V1 и V2. Название «цилиндрический» применительно к электроннооптическим системам отражает то обстоятельство, что в качестве электронных линз они могут действовать на электронный пучок так же, как цилиндрическая светооптическая линза — на световой пучок.
Электронное копирование
Электро'нное копи'рование, электронно-искровое, электроискровое, процесс копирования документов, основанный на использовании теплового действия электрического (искрового) разряда. Э. к. применяют преимущественно при изготовлении ротаторных (трафаретных) и реже офсетных печатных форм для оперативной полиграфии . Э. к. осуществляется в электронно-искровых копировальных аппаратах (рис. ). В аппарате листовой оригинал (черно-белый или цветной, выполненный карандашом, тушью, машинописным или типографским способом) и заготовку для печатной формы — пластикатную электропроводную плёнку — закрепляют на роторе (металлическом цилиндре). При вращении ротора, и равномерном перемещении оптической головки участки оригинала поочерёдно проходят под оптической головкой, в которой размещаются осветитель и фотоэлемент . Луч света, формируемый осветителем, отражается от поверхности оригинала (при этом интенсивность светового потока меняется в зависимости от отражательной способности участка, над которым проходит головка) и попадает на фотоэлемент, где световой поток преобразуется в электрический сигнал, который после усиления поступает на игольчатый электрод, перемещающийся синхронно с оптической головкой. Между электродом и поверхностью ротора возникает искровой разряд, прожигающий в заготовке отверстия в местах, соответствующих тёмным участкам изображения оригинала. Процесс изготовления копии длится 5—10 мин. Разрешающая способность электронно-искровых копировальных аппаратов 60—240 линий на 1 мм.
Лит.: Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.
А. В. Алферов.
Рис. к ст. Электронное копирование.
Электронно-искровой копировальный аппарат «ЭЛИКА» (СССР): схема устройства (вверху) и внешний вид (внизу).
Электроннолучевая обработка
Электроннолучева'я обрабо'тка, см. в ст. Электрофизические и электрохимические методы обработки .
Электроннолучевая печь
Электроннолучева'я печь, разновидность электрической печи , в которой электрическая энергия преобразуется в тепловую непосредственно в расплавляемом металле в результате соударения с ним электронов, вылетающих из электронной пушки . Электроны разгоняются электрическим полем высокого напряжения (10— 35 Кб) в условиях низкого давления (ниже 10 мн/м 2 ). Э. п., применяемые в металлургии чистых металлов и сплавов, состоят из следующих узлов и систем (рис. ): излучатель электронов (электронная пушка) с катодом, ускоряющим анодом и магнитной фокусирующей системой; плавильная камера со шлюзовыми устройствами и кристаллизатором (изложницей или тиглем) для металла; вакуумная система; механизмы перемещения переплавляемого металла; блок электропитания с системой автоматического регулирования. Переплавляемый металл подаётся в Э. п. (через вакуумный затвор) в виде так называемого расходуемого электрода, слитка, монокристалла, порошка и т. д. Расплавленный металл стекает каплями либо в водоохлаждаемый кристаллизатор — изложницу (при наплавлении слитка) или тигель (при плавке в гарнисаже с целью получения фасонных отливок и при выращивании монокристаллов),— либо в холодные водоохлаждаемые подовые ёмкости (при рафинировании жидкого металла). В промышленности работают Э. п. мощностью более 1 Мвт для переплава слитков стали диаметром до 1000 мм, жаропрочных сплавов — до 500 мм, тугоплавких металлов — до 280 мм. Электрический кпд Э. п. 0,6—0,8. Удельный расход электроэнергии 1—2 для стали, 10—15 для ниобия, тантала, молибдена и 20—40 квт ·ч/кг для вольфрама. Проектируют (1978) Э. п. мощностью до 7,2 Мвт для переплава стальных слитков диаметром до 2000 мм (с холодным подом).
Лит.: Электронные плавильные печи, М., 1971; Егоров А. В., Моржин А. Ф., Электрические печи, М., 1975.
А. В. Егоров, А. Ф. Моржин.
Схемы конструкций электроннолучевых печей: а—д, ж — с электростатическими электронными пушками; е — с магнетронной электронной пушкой; ЭП — электронная пушка; КК — кольцевой катод; ЛК — линейный катод; СК (ДК) — спиральный (или дисковый) катод; А — ускоряющий анод; МФС — магнитная фокусирующая система; МОС — магнитная отклоняющая система; РЭ — расходуемый электрод; Ш — сыпучая шихта; М — монокристалл; Сл — слиток; Кр — кристаллизатор; ГТ — гарнисажный тигель; Т — тигель; Ф — литейная форма; ХП — холодный под; ВС — вакуумная система.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ЭЛ)"
Книги похожие на "Большая Советская Энциклопедия (ЭЛ)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ЭЛ)", комментарии и мнения людей о произведении.