» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЭЛ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЭЛ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЭЛ)" читать бесплатно онлайн.








  Для измерения поглощения используют радиоспектрометры (спектрометры ЭПР), в которых при постоянной частоте и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В спектрометрах ЭПР прямого усиления высокочастотные колебания от клистрона по волноводному тракту подаются в объёмный резонатор (полость размером ~ l), помещенный между полюсами электромагнита. Прошедшие через резонатор или отражённые от него электромагнитные волны попадают на кристаллический детектор. Изменение поглощаемой в образце мощности регистрируется по изменению тока детектора. Для повышения чувствительности спектрометра внешнее магнитное поле модулируют с частотой 30 гц — 1 Мгц. При наличии в образце поглощения прошедшие или отражённые от резонатора СВЧ-волны также оказываются промодулированными. Промодулированный сигнал усиливается, детектируется и подаётся на регистрирующее устройство (осциллограф или самописец). При этом записываемый сигнал имеет форму производной от кривой поглощения (рис. 4 ). Чувствительность спектрометра ЭПР определяется уровнем тепловых шумов усилителя. В супергетеродинных спектрометрах на детектор подаётся мощность от дополнительного клистрона. Частота колебаний, генерируемых этим клистроном, отличается от частоты сигнального клистрона. Сигнал с детектора усиливается на разностной частоте 30—100 Мгц.

  Применение метода ЭПР. Наиболее хорошо изучены спектры ЭПР ионов переходных металлов. Для того чтобы устранить уширение линии, обусловленное дипольным взаимодействием с соседними парамагнитными ионами, измерения проводят на монокристаллах, являющихся диамагнитными диэлектриками, куда в качестве примесей (0,001%—0,1%) вводят парамагнитные ионы. Влияние окружающих ионов на парамагнитный ион рассматривают как действие точечных электрических зарядов. ЭПР наблюдают на заселённых нижних энергетических уровнях парамагнитного иона, получающихся в результате расщепления основного уровня электрическим полем окружающих зарядов (см. Кристаллическое поле ). В случае ионов редкоземельных элементов кристаллическое поле оказывается слабым по сравнению с взаимодействием электронов иона, т. к. парамагнетизм этих ионов обусловлен глубоко лежащими 4 f -электронами. Момент количества движения иона определяется суммой орбитального и спинового моментов основного уровня. В кристаллическом поле уровни с разной абсолютной величиной проекции полного магнитного момента не эквивалентны по энергии. Для ионов группы Fe, парамагнетизм которых обусловлен 3 d-электронами, кристаллическое поле оказывается сильнее спин-орбитального взаимодействия, определяющего энергетический спектр свободного иона. В результате максимальная величина проекции орбитального момента либо уменьшается, либо становится равной нулю. Принято говорить, что происходит частичное или полное «замораживание» орбитального момента.

  Симметрия кристаллического поля определяет симметрию g -фактора, а напряжённость кристаллического поля определяет его величину. Поэтому изучение g -фактора парамагнитных ионов позволяет исследовать кристаллические поля. По спектрам ЭПР можно определить также заряд парамагнитного иона, симметрию окружающих его ионов, что в сочетании с данными рентгеновского структурного анализа даёт возможность определить расположение парамагнитного иона в кристаллической решётке. Знание энергетических уровней парамагнитного иона позволяет сравнивать результаты ЭПР с данными оптических спектров и вычислять магнитные восприимчивости парамагнетиков.

  Метод ЭПР широко применяется в химии. В процессе химических реакций или под действием ионизирующих излучений могут образовываться молекулы, у которых хотя бы один электрон не спарен (незаполненная химическая связь). Эти молекулы, называются свободными радикалами, относительно устойчивы и обладают повышенной химической активностью. Их роль в кинетике химических реакций велика, а метод ЭПР — один из важнейших методов их исследования; g -фактор свободных радикалов обычно близок к значению g S , а ширина линии мала. Из-за этих качеств один из наиболее устойчивых свободных радикалов (a-дифинил-b -пикрилгидразил), у которого g = 2,0036, используется как стандарт при измерениях ЭПР.

  Изучение локализованных неспаренных электронов исключительно важно для исследования механизмов повреждения биологической ткани, образования промежуточных молекулярных форм в ферментативном или другом катализе . Поэтому метод ЭПР интенсивно используется в биологии, где с его помощью изучаются ферменты, свободные радикалы в биологических системах и металлоорганические соединения .

  В кристаллах делокализованные электроны и дырки могут захватываться дефектами и примесями, практически неизбежными в кристаллической решётке. Очень часто эти центры определяют окраску кристаллов (см. Центры окраски ). Метод ЭПР позволяет по расположению неспаренных электронов определить природу и локализацию центров окраски. В полупроводниках удаётся наблюдать ЭПР, вызываемый электронами, связанными на донорах.

  В металлах и полупроводниках наряду с циклотронным резонансом , обусловленным изменением орбитального движения электронов проводимости под действием переменного электрического поля СВЧ, возможен ЭПР, связанный с изменением ориентации спинов электронов проводимости. Наблюдение ЭПР на электронах проводимости затруднительно, т. к.: 1) доля неспаренных электронов проводимости мала (~kT/EF , где EF — Ферми энергия); 2) из-за скин-эффекта глубина проникновения электромагнитного поля в диапазоне СВЧ чрезвычайно мала (~ 10-3 —10-6 см ); 3) форма линии поглощения сильно искажена из-за скин-эффекта и диффузии электронов.

  ЭПР наблюдается в растворах и стеклах, содержащих ионы переходных металлов. Это позволяет судить о заряде парамагнитных ионов, строении сольватных оболочек и т. п. Спектр ЭПР в газах (O2 , NO, NO2 ) сложнее, что связано со спино-орбитальным взаимодействием, вращательным движением молекул и влиянием ядерного спина.

  Лит.: Альтшулер С. А., Козырев Б. М., Электронный парамагнитный резонанс соединений элементов промежуточных групп, 2 изд., М., 1972; Абрагам А., Блини Б., Электронный парамагнитный резонанс переходных ионов, пер. с англ., т. 1—2, М., 1972—73; Пейк Д. Э., Парамагнитный резонанс, пер. с англ., М., 1965; Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., М., 1964; Эткинс П., Саймоне М., Спектры ЭПР и строение неорганических радикалов, пер. с англ., М., 1970; Инграм Д., Электронный парамагнитный резонанс в свободных радикалах, пер. с англ., М., 1961; Ингрэм Д., Электронный парамагнитный резонанс в биологии, пер. с англ., М., 1972; Людвиг Дж., Вудбери Г., Электронный спиновой резонанс в полупроводниках, пер. с англ., М., 1964.

  В. Ф. Мещеряков.

Рис. 1. Изменение угла q прецессии магнитного момента m с частотой n1 = gH1 /2p в системе координат охуz , вращающейся вместе с полем H1 вокруг направления Н с частотой n = gH1 /2p.

Рис. 3. а — тонкая структура спектра ЭПР. Для случая S = 1 наблюдаются две линии поглощения в результате расщепления уровней при Н = 0; б — сверхтонкая структура спектра ЭПР.

Рис. 2. При hv = g?H происходит резонансное поглощение энергии переменного электромагнитного поля.

Рис. 4. Спектр ЭПР иона Mn2+ в кристалле метасиликата. Видны 5 групп линий тонкой структуры, соответствующих спину иона Mn2+ S = 5/2. Каждая группа состоит из 6 линий сверхтонкой структуры, обусловленной взаимодействием с ядерным спином I = 5/2.

Электронный проектор

Электро'нный прое'ктор, автоэлектронный микроскоп, безлинзовый электроннооптический прибор для получения увеличенного в 105 —106 раз изображения поверхности твёрдого тела. Э. п. был изобретён в 1936 немецким физиком Э. Мюллером. Основные части Э. п.: катод в виде острия с радиусом кривизны кончика ~10-7 —10-8 м; стеклянная сферическая или конусообразная колба, дно которой покрыто слоем люминофора; и анод в виде проводящего слоя на стенках колбы или проволочного кольца, окружающего катод. При прогреве острия его кончик становится монокристаллическим и приобретает округлённую форму. Колба вакуумируется (остаточное давление ~10-9 —10-11 мм рт. ст. ). Когда на анод подают положительное напряжение в несколько тыс. вольт относительно расположенного в центре колбы катода-острия, напряжённость электрического поля в непосредственной близости от кончика острия достигает 10-7 —10-8 в/см. Это обеспечивает интенсивную автоэлектронную эмиссию (см. Туннельная эмиссия ) с кончика катода. Электроны, ускоряясь в радиальных (относительно кончика) направлениях, бомбардируя экран и вызывая свечение люминофора, создают на экране увеличенное изображение поверхности катода, отражающее симметрию кристаллической структуры острия (см. рис. ). Увеличение в Э. п. равно отношению R/ br, где R — расстояние катод — экран, r — радиус кривизны острия, b — фактор, характеризующий отклонение формы эквипотенциальных поверхностей электрического поля от сферической. Разрешающую способность Э. п. ограничивают наличие тангенциальных составляющих скоростей автоэлектронов у кончика острия и (в меньшей степени) явление дифракции электронов. Предел разрешения Э. п. составляет (2—3)×10-7 см.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЭЛ)"

Книги похожие на "Большая Советская Энциклопедия (ЭЛ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЭЛ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.