БСЭ БСЭ - Большая Советская Энциклопедия (ЭР)

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Большая Советская Энциклопедия (ЭР)"
Описание и краткое содержание "Большая Советская Энциклопедия (ЭР)" читать бесплатно онлайн.
Лит.: Сабольчи Б., История венгерской музыки, (пер. с венг,), Будапешт, 1964, с. 71—74; Мароти Я., Путь Эркеля от героико-лирической оперы к критическому реализму, в кн.: Музыка Венгрии, (пер. с венг.), М., 1968; Abranyi К., Erkel Ferenc elete es mukodese, Bdpst, 1895; Legany D., Erkel Ferenc muvei es korabeli tortenetuk, Edpst, 1972.
П. Ф. Вейс.
Ф. Эркель.
Эркен-Шахар
Эрке'н-Шаха'р, поселок городского типа в Адыге-Хабльском районе Карачаево-Черкесской АО, на р. Малый Зеленчук, близ впадения ее в Кубань. Ж.-д. ст. на ветке от линии Армавир — Минеральные Воды. Заводы сахарный, комбикормовый. Объединение по откорму и доращиванию крупного рогатого скота; плодопитомнический совхоз.
Эркер
Э'ркер (нем. Erker), фонарь (в архитектуре), полукруглый, треугольный или многогранный остекленный выступ в стене здания. Делается чаще всего в несколько этажей, иногда во всю высоту фасада (обычно кроме 1-го этажа); увеличивает площадь внутренних помещений, а также улучшает их освещаемость и инсоляцию.
Эркман-Шатриан
Эркма'н-Шатриа'н (Erckmann Chatrian), литературное имя двух французских писателей-соавторов: Эмиль Эркман (20.5.1822, г. Фальсбур, департамент Мозель, — 14.3.1899, Люневиль, департамент Мерт и Мозель) и Шарль Луи Гратьен Александр Шатриан (18.12.1826, Ле-Гран-Сольда, департамент Мерт, — 3.9.1890, Вильмомбль, департамент Сена). Эркман в 1842—46 изучал право в Париже; Шатриан окончил коллеж в Фальсбуре. Их первый сборник рассказов — «Фантастические повести и сказки» (1849). В основе ранних повестей Э.-Ш. лежат эльзасские народные легенды, стилизованные в духе фантастики Э. Т. А. Гофмана . Романы «Даниэль Рок» (1861, русский перевод 1869), «История школьного учителя» (1871), рассказы рисуют сцены народной жизни, быт и нравы простых людей Эльзаса и Лотарингии. Наиболее ценная часть литературные наследия Э.-Ш. — их национально-исторические романы. Острокритическое отношение к милитаристской антинародной политике Второй империи, республиканские симпатии Э.-Ш. обусловили их обращение к эпохе Великой французской революции и империи Наполеона I: романы «Безумец Егоф...» (1862), «Рекрут 1813» (1864), «Ватерлоо» (1865), «История одного крестьянина» (v. 1—4, 1868—70). В «Истории человека из народа» (1865) изображены революционные события 1848 в Париже. К национально-историческим романам примыкают произведения, рисующие трагические события франко-прусской войны 1870—1871: «История плебисцита...» (18/2), «Капрал Фредерик...» (1874), «Изгнанник...» (1882). Историко-литературное значение творчества Э.-Ш. обусловлено изображением жизни и психологии тружеников деревни. Э.-Ш. принадлежат драмы, инсценировки собственных романов, либретто комических опер. Произведения Э.-Ш. многократно переводились на русский язык.
Соч.: Contes et romans nationaux et populaires, v. 1—14, [P., 1962—63]; в рус. пер. — Собр. соч., [кн. 1—20], П., [1915]; Парижские баррикады, М. — П., 1923; Тереза, М., 1963; История одного крестьянина, т. 1—2, М., 1967.
Лит.: История французской литературы, т. 2, М., 1956; Писарев Д. И., Французский крестьянин в 1789 году, Соч., т, 4, М., 1956; Вюрмсер А., Не посмотреть ли на известное по-новому, М., 1975; 3оля Э., Эркман-Шатриан, Собр. соч., т. 24, М., 1966; Benoit-Guyod G., La vie et l'oeuvre d'Erckmann-Chatrian, P., 1963.
И. С. Ковалева.
Эркулану Алешандри
Эркула'ну , Эркулану ди Карвалью-и-Араужу (Herculano de Carvalho e Araújo) Алешандри (28.3. 1810, Лисабон, — 13.9.1877, Вали-ди-Лобуш), португальский писатель, историк, политический деятель. Придерживался либеральных взглядов. Участвовал в мигелистских войнах на стороне противников абсолютизма. Э. написал «Историю Португалии» (т. 1—4, 1846—53), в которой довёл исследование до конца 13 в., и «Историю происхождения и установления инквизиции в Португалии» (т. 1—3, 1854—1859). Основоположник исторического романа и повести в португальской литературе. В романах «Шут» (1843), «Пресвитер Эурику» (1844), «Систерский монах» (1848), в сборнике «Легенды и повести» (1851) Э. изобразил общественно-политическую жизнь Португалии, быт и нравы средневековья.
Соч.: Opuscules, t. 1—10, Lisboa, 1873—1908; в рус. пер. — Сантаренский алькайд. Рассказы. [Предисл. Е. Голубевой], Л., 1974.
Лит.: Nemésio V., A mocidade de Herculano, v. 1—2, Lisboa, 1934; Barradas de Carvalho J., As ideias políticas e sociais de A. Herculano, Lisboa, 1949.
Е. Г. Голубева.
Эрланга
Эрла'нга, Аирланга (1001—1049), махараджа средневекового государства Матарам на Яве. Вступил на престол Матарама в 1019. В 1022 унаследовал от отца о. Вали, к 1037 объединил большую часть Восточной и значительную часть Центральной Явы. В историю Индонезии вошёл как «собиратель яванских земель». Э. был светским и духовным главой государства. При нём Матарам стал господствующей силой в центральных и восточных районах архипелага, тогда как в западных районах по-прежнему господствовала Шривиджайя . Союз между двумя государствами был закреплен (1035) браком Э. с принцессой из Шривиджайи (ставшей его 2-й женой). Э. содействовал развитию земледелия и торговли, поощрял литературу и искусства. Покровительствовал индуизму. Незадолго до смерти Э. разделил государство между побочными сыновьями (детей от обеих законных жён у него не было) на Джангалу и Панджалу (Кедири). после чего удалился в уединённую обитель и стал аскетом.
Эрланга формулы
Э'рланга фо'рмулы, формулы массового обслуживания теории , выражающие стационарную вероятность отказа для систем с потерями. Получены датским инженером А. К. Эрлангом (А. К. Eriang, 20-е гг. 20 в.) при решении проблем, связанных с перегрузкой телефонных линий.
Эрланген
Э'рланген (Eriangen), город в ФРГ, в земле Бавария, на р. Регниц и Людвигс-канале. 100,7 тыс. жителей (1976). Входит в промышленный «треугольник» Нюрнберг—Фюрт—Э. Электротехническая и радиоэлектронная (концерн «Сименс») промышленность, производство станков, электровозов, хлопчатобумажных изделий и бумаги. Университет (с 1743; в 1961 объединён с Нюрнбергской высшей экономической школой).
Эрлангенская программа
Эрла'нгенская програ'мма, единая точка зрения на различные геометрии (например, евклидову, аффинную, проективную), сформулированная впервые Ф. Клейном на лекции, прочитанной в 1872 в университете г. Эрланген (Германия) и напечатанной в том же году под названием «Сравнительное обозрение новейших геометрических исследований».
Сущность Э. п. состоит в следующем. Как известно, евклидова геометрия рассматривает те свойства фигур, которые не меняются при движениях; равные фигуры определяются как фигуры, которые можно перевести одну в другую движением. Но вместо движений можно выбрать какую-нибудь иную совокупность геометрических преобразований и объявить «равными» фигуры, получающиеся одна из другой с помощью преобразований этой совокупности; при этом придём к иной «геометрии», изучающей свойства фигур, не меняющиеся при рассматриваемых преобразованиях. Введённое «равенство» должно удовлетворять следующим трём естественным условиям: 1) каждая фигура F «равна» сама себе, 2) если фигура F «равна» фигуре F ' то и F ' «равна» F, 3) если фигура F «равна» F' а F' «равна» F'', то и F «равна» F''. Соответственно этому приходится накладывать на совокупность преобразований следующие три требования: 1) в совокупность должно входить тождественное преобразование, оставляющее всякую фигуру на месте, 2) наряду с каждым преобразованием П, переводящим фигуру F в F' в совокупность должно входить «обратное» преобразование П-1 переводящее F' в F, 3) вместе с двумя преобразованиями П1 и П2 , переводящими соответственно F в F' и F' в F'', в совокупность должно входить произведение П2 П1 этих преобразований, переводящее F в F'' (П2 П1 ) состоит в том, что сначала производится П1 , а затем П2 ). Требования 1), 2) и 3) означают, что рассматриваемая совокупность является группой преобразований (см. Непрерывная группа ). Теория, которая изучает свойства фигур, сохраняющиеся при всех преобразованиях данной группы, называется геометрией этой группы.
Выбирая по-разному группу преобразований, получим разные геометрии. Так, принимая за основу группу движений, мы придём к обычной (евклидовой) геометрии; заменяя движения аффинными преобразованиями или проективными преобразованиями , придем к аффинной, соответственно, проективной геометрии. Основываясь на идеях А. Кэли , Клейн показал, что принятие за основу группы проективных преобразований, переводящих в себя некоторый круг (или произвольное коническое сечение), приводит к неевклидовой геометрии Лобачевского (см. Лобачевского геометрия ). Клейн ввёл в рассмотрение довольно широкий круг других геометрий, определяемых подобным же образом.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Большая Советская Энциклопедия (ЭР)"
Книги похожие на "Большая Советская Энциклопедия (ЭР)" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЭР)"
Отзывы читателей о книге "Большая Советская Энциклопедия (ЭР)", комментарии и мнения людей о произведении.