» » » » БСЭ БСЭ - Большая Советская Энциклопедия (ЭЙ)


Авторские права

БСЭ БСЭ - Большая Советская Энциклопедия (ЭЙ)

Здесь можно скачать бесплатно "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЙ)" в формате fb2, epub, txt, doc, pdf. Жанр: Энциклопедии. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЙ)
Рейтинг:
Название:
Большая Советская Энциклопедия (ЭЙ)
Автор:
Издательство:
неизвестно
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Большая Советская Энциклопедия (ЭЙ)"

Описание и краткое содержание "Большая Советская Энциклопедия (ЭЙ)" читать бесплатно онлайн.








  Аналогичные подстановки делаются в теории чисел при решении неопределённых уравнений 2-й степени в рациональных числах.

Эйлера постоянная

Э'йлера постоя'нная, предел

 С = 0,577215 ...,

рассмотренный Л. Эйлером в 1740. Эйлер дал для С ряд представлений в форме рядов и интегралов; например,

,

,

где x(s ) — дзета-функция . Встречается в теории различных классов специальных функций, например гамма-функции . До сих пор неизвестно, является ли Э. п. иррациональным числом.

Эйлера уравнение

Э'йлера уравне'ние,

  1) дифференциальное уравнение вида

, (*)

где a o ,... , an — постоянные числа; при х> 0 уравнение (*) подстановкой х = et сводится к линейному дифференциальному уравнению с постоянными коэффициентами. Изучалось Л. Эйлером с 1740. К уравнению (*) сводится подстановкой x' = ax + b уравнение

.

  2) Дифференциальное уравнение вида

,

где X (x ) = a0 x4 + a1 x 3 + a 2 x 2 + a3 x + a4 , Y (y ) = а0 у4 +а1 у 3 +а2 у 2 +а3 у +a4 . Л. Эйлер рассматривал это уравнение в ряде работ начиная с 1753. Он показал, что общее решение этого уравнения имеет вид F (х , у ) = 0, где F (х , у ) симметричный многочлен четвёртой степени от х и у. Этот результат Эйлера послужил основой теории эллиптических интегралов.

  3) Дифференциальное уравнение вида

'

служащее в вариационном исчислении для разыскания экстремалей интеграла

.

  Выведено Л. Эйлером в 1744.

Эйлера уравнения

Э'йлера уравне'ния,

  1) в механике — динамические и кинематические уравнения, используемые при изучении движения твёрдого тела; даны Л. Эйлером в 1765.

  Динамические Э. у. представляют собой дифференциальные уравнения движения твёрдого тела вокруг неподвижной точки и имеют вид

Ix + (Iz — I y ) wy wz = Mx ,

I y + (Ix —  Iz ) wz wx = M y , (1)

Iz + (I y — Ix ) wx wy = Mz ,

где Ix , I y , Iz — моменты инерции тела относительно гл. осей инерции, проведённых из неподвижной точки, wх , wу , wz — проекции мгновенной угловой скорости тела на эти оси, Mx , M y , Mz — гл. моменты сил, действующих на тело, относительно тех же осей; , ,    — проекции углового ускорения.

  Кинематические Э. у. дают выражения wх , wу , wz через Эйлеровы углы j, y, q и имеют вид

wx = sin q sinj + cosj,

wу = sin q cosj — sinj, (2)

wz =  + cos q.

  Система уравнений (1) и (2) позволяет, зная закон движения тела, определить момент действующих на него сил, и, наоборот, зная действующие на тело силы, определить закон его движения.

  2) В гидромеханике — дифференциальные уравнения движения идеальной жидкости в переменных Эйлера. Если давление р , плотность r, проекции скоростей частиц жидкости u , u , w и проекции действующей объёмной силы X , У , Z рассматривать как функции координат x , у , z точек пространства и времени t (переменные Эйлера), то Э. у. в проекциях на прямоугольные декартовы оси координат будут:

,

,

.

Решение общей задачи гидромеханики в переменных Эйлера сводится к тому, чтобы, зная X , У , Z , а также начальные и граничные условия, определить u , u, w, р , r, как функции х , у , z и t. Для этого к Э. у. присоединяют уравнение неразрывности в переменных Эйлера

.

  В случае баротропной жидкости, у которой плотность зависит только от давления, 5-м уравнением будет уравнение состояния r = j (р ) (или r const, когда жидкость несжимаема).

  Э. у. пользуются при решении разнообразных задач гидромеханики.

  Лит.: Бухгольц Н. Н., Основной курс теоретической механики, ч. 2, 9 изд., М., 1972, §14, 16; Лойцянский Л. Г., Механика жидкости и газа, 4 изд., М., 1973.

  С. М. Тарг.

Эйлера формулы

Э'йлера фо'рмулы в математике, важнейшие формулы, установленные Л. Эйлером .

  1) Э. ф., связывающие тригонометрические функции с показательной (1743):

eix = cos х + i sin х ,

, .

  2) Э. ф., дающая разложение функции sin х в бесконечное произведение (1740):

.

  3) Тождество Эйлера о простых числах:

,

  где s = 1, 2,..., и произведение берётся по всем простым числам р.

  4) Тождество Эйлера о четырёх квадратах:

(a 2 +b 2 + c 2 + d 2 )(p 2 + q 2 + r 2 + s 2 = x 2 +y 2 +z 2 +t 2 , где

,

,

,

.

  5) формула Эйлера о кривизнах (1760):

.

  Она даёт выражение кривизны 1/R любого нормального сечения поверхности через её главные кривизны 1/R 1 и 1/R 2 и угол j между одним из главных направлений и данным направлением.

  Эйлеру принадлежит также Эйлера—Маклорена формула суммирования, Эйлера—Фурье формулы для коэффициентов разложений функций в тригонометрические ряды .

  Лит. см. при ст. Эйлер .

Эйлера функция

Э'йлера фу'нкция, число j(а ) натуральных чисел, меньших, чем а , и взаимно простых с а :

,

где p1 ,... , pk — простые делители числа а. Введена Л. Эйлером в 1760—61. Если числа а и b взаимно просты, тоj(ab ) = j(а ) j(b ). При т> 1 и наибольшем общем делителе (а , m ) = 1, а , m — взаимно просты, имеет место сравнение a j(m ) = 1 (mod m ) (теорема Эйлера). Э. ф. встречаются во многих вопросах чисел теории .

Эйлера числа

Э'йлера чи'сла в математике, целые числа Еп , являющиеся коэффициентами при t n /n !, в разложении функции 1/ cht (см. Гиперболические функции ) в степенной ряд:

  Введены Л. Эйлером в 1755. Э. ч. связаны рекуррентным соотношением (Е +1) n +(E ¾1) n = 0, n = 1, 2, 3,..., E 0 = 1 (после возведения в степень надо вместо Ek подставить Ek ) и с Бернулли числами соотношениями


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Большая Советская Энциклопедия (ЭЙ)"

Книги похожие на "Большая Советская Энциклопедия (ЭЙ)" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора БСЭ БСЭ

БСЭ БСЭ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "БСЭ БСЭ - Большая Советская Энциклопедия (ЭЙ)"

Отзывы читателей о книге "Большая Советская Энциклопедия (ЭЙ)", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.