Авторские права

Наталья Бурханова - Теплотехника

Здесь можно купить и скачать "Наталья Бурханова - Теплотехника" в формате fb2, epub, txt, doc, pdf. Жанр: Техническая литература, издательство Конспекты, шпаргалки, учебники «ЭКСМО»b4455b31-6e46-102c-b0cc-edc40df1930e, год 2008. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Наталья Бурханова - Теплотехника
Рейтинг:
Название:
Теплотехника
Издательство:
неизвестно
Год:
2008
ISBN:
978-5-699-26007-2
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Теплотехника"

Описание и краткое содержание "Теплотехника" читать бесплатно онлайн.



Информативные ответы на все вопросы курса «Теплотехника» в соответствии с Государственным образовательным стандартом.






С увеличением номера марки мазута увеличивается его плотность, которая составляет 0,95-1,05 г/см3 при 20oС; при повышении температуры плотность уменьшается.

При подготовке мазута к сжиганию необходимо учитывать его плотность и марку. Подготовка заключается в отстое и фильтрации мазута для отделения воды и механических примесей (глины, песка и т. п.), которая проходит при повышенной температуре, в результате чего происходит отделение мазута от воды: вязкость и плотность мазута при нагреве уменьшаются, вследствие чего он всплывает вверх. Внизу емкости скапливается влага, вверху – обезвоженный мазут.

При сливе из железнодорожных цистерн, при подаче по трубопроводам из заводских и цеховых емкостей к печам, а также при распылении форсунками (мазут обычно сжигают в распыленном состоянии) большое значение имеет вязкость мазута. На перекачку и распыление мазута затрачивается тем меньше энергии, чем ниже его вязкость. Следовательно, чем выше температура, тем ниже вязкость. Температуру выбирают по графикам вязкости, исходя из обеспечения условной вязкости мазута 5-10 ед.

Температуру вспышки мазута, т. е. температуру нагрева, при достижении которой начинается интенсивное выделение летучих составляющих, способных загораться от искры или пламени, необходимо учитывать при разогреве. Температура вспышки обычно изменяется в пределах 80-190оС. И не следует путать температуру вспышки и температуру воспламенения, под которой понимают температуру нагрева, при достижении которой (температура воспламенения мазута 530-600oС, газов – 500-700oС) мазут самопроизвольно воспламеняется и при благоприятных условиях продолжает гореть.

5. Основные положения теории горения

Горением называют процесс быстрого химического соединения горючих элементов топлива с окислителем (обычно с кислородом воздуха), сопровождающийся выделением теплоты и света.

Факел – один из видов пламени, который образуется при струйной подаче топлива и воздуха в печь. В факеле, который имеет конкретные формы и размеры, происходят единовременно процессы непосредственно горения, подогрева смеси до температуры воспламенения и перемешивания.

В теории горения различают гомогенное и гетерогенное горение. Гомогенное горение происходит в объеме, а гетерогенное горение – на поверхности капелек, а затем, после испарения летучих составляющих – на сажистых частицах. Чем меньше размер частиц жидкого топлива, тем больше будет удельная поверхность взаимодействия жидкой фазы с газовой. Поэтому распыление жидкого топлива позволяет сжечь больше топлива в единице объема, т. е. интенсифицировать горение.

Гомогенное горение может происходить в двух случаях, которые называются кинетическим и диффузионным. В кинетическом случае в зону горения (скажем, в рабочее пространство печи) подают заранее подготовленную топливно-воздушную смесь. Главная часть процесса – это непосредственный прогрев смеси и окисление горючих составляющих топлива и горение. При этом факел становится коротким и высокотемпературным. Предварительный подогрев смеси или обогащение воздуха кислородом ускоряют процесс горения: подогрев практически всех газовоздушных смесей до 500 °С способствует увеличению скорости горения почти в 10 раз.

Но температура предварительного подогрева смеси не должна превышать температуры ее воспламенения. При диффузионном горении процессы прогрева, смешения смеси и горения осуществляются в факеле одновременно. Наиболее медленная стадия – встречная диффузия молекул микро– и макрообъемов газа и воздуха, другими словами – смесеобразование. Поэтому факел будет длиннее, чем в первом случае. В стремлении сократить длину факела производят дробление газового и воздушного потоков на отдельные струйки. Также уменьшить факел помогает увеличение скоростей струй и направление потоков газа и воздуха под углом друг к другу и т. д.

Воспламенение смеси горючего газа и воздуха возможно только при их определенном соотношении. Их предельные соотношенияназывают концентрационными пределами. Различают нижний и верхний пределы, определяемые предельным содержанием горючего газа в смеси, %. Для водорода пределы имеют значения 4,1 – 75; оксида углерода – 12,5-75; метана – 5,3-14; коксового газа – 5,6-30,4, а для природного газа – 4-13.

В теплотехнике часто используют понятие теплового напряжения, под которым подразумевают количество теплоты, выделяющееся при сжигании топлива в единицу времени, отнесенное к 1 м3 топки или рабочего пространства печи. Для жидкого топлива оно доходит до 600 кВт/м3, а для газообразного – вдвое больше.

6. Аналитический расчет горения топлива

Для расчетов используют следующие соотношения и величины:

1) отношение объемного содержания азота к кислороду в обычном воздухе, не обогащенном кислородом, k= 3,76;

2) молекулярную массу химических элементов (для водорода она приближенно равна 2, для азота – 28, кислорода и серы – 32 кг/моль);

3) объемы воздуха и продуктов горения при нормаль-ныхусловиях (температура 0 °С, давление 101,3 кПа).

Рассмотрим состав жидкого топлива:

СP + НP + ОP + NP + Sp + Ар + Wp=100.

Горючими составляющими являются углерод, водород и сера. При использовании сухого воздуха реакции полного горения составляющих имеют вид:

С + О2 + kN2 =CO2 + kN2 +Q1;

2H2 + O2+ kN2 =2H2O + kN2 + Q2;

S + O2+ kN2 = SO2+ kN2 +Q3.

При горении 1 моля углерода и серы расходуется по 1 молю кислорода. При горении 2 молей водорода расходуется также 1 моль кислорода. С каждым молем кислорода в печь вносится k молей азота. Азот переходит в продукты горения. Поэтому, например, при горении 1 моля углерода получаются 1 моль углекислого газа и 3,76 моля азота. При горении углерода по этой реак ции выделяется количество теплоты Qt. При горении водорода образуется свой состав продуктов горения и выделяется иное количество теплоты.

На горение 1 моля углерода затрачивается 1 кмоль кислорода объемом 22,4 м3. Если надо рассчитать расход кислорода на 1 кг углерода, то объем 1 кмоля кислорода делят на молекулярную массу углерода, равную 12. Поэтому на 1 кг углерода расходуется 22,4 / 12 = = 1,867 м3/кг кислорода. Рассуждая аналогично, получим, что на горение 1 кг водорода затрачивается 22,4 / /(2 О2) = 5,5 м3 кислорода (произведение в знаменателе означает, что в реакции горения принимают участие две молекулы водорода с молекулярной массой 2). На горение 1 кг серы расходуется 22,4 / 32 = 0,7 м3 кислорода.

Отношение действительного расхода воздуха к теоретически необходимому расходу называют коэффициентом расхода воздуха:

α = La /L0, или La= αL0,

где La и L0– действительный и теоретический расходы воздуха, м3/кг или м3/м3. Коэффициент расхода воздуха зависит от вида топлива, конструкции топливосжигающего устройства (горелки или форсунки) и температуры подогрева воздуха и газа.

7. Контроль коэффициента расхода воздуха

При недостатке воздуха или несовершенстве топли-восжигающих устройств горение может быть неполным.

Наличие в продуктах горения горючих составляющих (оксида углерода, водорода, метана или сажистого углерода) обусловливает химическую неполноту горения или, как чаще говорят, химический недожог топлива. Последний характеризуется потерями теплоты в процентах от низшей теплоты сгорания топлива.

Чем больше коэффициент расхода воздуха, тем полнее протекает процесс горения. Однако увеличение этого коэффициента приводит к повышенному расходу воздуха и значительным потерям теплоты с газами, уходящими из печи. Температура в печи снижается, что приводит к ухудшению теплоотдачи в рабочем пространстве и усиленному окислению металлов. Поэтому в практике эксплуатации печей стремятся к выбору оптимального коэффициента расхода воздуха a.

Контроль aосуществляют двумя методами. По одному из них измеряют расходы топлива и воздуха и с помощью заранее вычисленных таблиц определяют а.Од-нако этот метод не позволяет учесть воздух, попадающий в печь через рабочие окна и неплотности в кладке печей. Поэтому периодически коэффициент расхода воздуха проверяют по составу продуктов сгорания при помощи газоанализаторов. Химическим анализом определяют содержание в продуктах сгорания RO2, CO, Н2, СН4 и О2, а затем с помощью формулы С. Г. Тройба определяют a:

α = 1+ UO2изб/ ΣRO2.

Здесь O2изб = О2 – 0,5СО – 0,5Н2– 2СН4– содержание избыточного кислорода.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Теплотехника"

Книги похожие на "Теплотехника" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Наталья Бурханова

Наталья Бурханова - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Наталья Бурханова - Теплотехника"

Отзывы читателей о книге "Теплотехника", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.