» » » Макс Лауэ - ИСТОРИЯ ФИЗИКИ


Авторские права

Макс Лауэ - ИСТОРИЯ ФИЗИКИ

Здесь можно скачать бесплатно "Макс Лауэ - ИСТОРИЯ ФИЗИКИ" в формате fb2, epub, txt, doc, pdf. Жанр: Физика, издательство ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ, год 1956. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Макс Лауэ - ИСТОРИЯ ФИЗИКИ
Рейтинг:
Название:
ИСТОРИЯ ФИЗИКИ
Автор:
Издательство:
ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО ТЕХНИКО-ТЕОРЕТИЧЕСКОЙ ЛИТЕРАТУРЫ
Жанр:
Год:
1956
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ИСТОРИЯ ФИЗИКИ"

Описание и краткое содержание "ИСТОРИЯ ФИЗИКИ" читать бесплатно онлайн.








Акустика образует ветвь механики, которая, однако, особенно сначала, развивалась довольно самостоятельно. Уже в древности знали, что чистые тона в противоположность шумам основаны на периодических колебаниях источника звука. Пифагор (570-496 до н. э.) знал, кроме того, может быть из египетских источников, что длины струн, которые настроены на гармонические интервалы - октавы, квинты и т. д., при прочих одинаковых условиях относятся между собой, как 1:2, 2:3 и т. д. Значение, которое пифагорейцы приписывали числам в своей философии, связано, несомненно, с глубоким впечатлением, которое на них произвело это открытие. Изобретатели органов, широко распространившихся в IX столетии н. э., знали соответствующее правило у органных труб. Но акустическая наука в явной форме еще не участвовала в развитии музыкального искусства в течение двух тысячелетий после Пифагора. Лишь Галилей дал также и здесь решающий толчок для дальнейшего. В упомянутых «Discorsi» 1638 г. он устанавливает частоту как физический коррелат ощущения высоты тона. Он характеризует относительную высоту двух звуков посредством отношения их частот и выводит зависимость частоты колебаний струны от длины, напряжения и массы. Он наблюдал возбуждение колебаний посредством резонанса и объяснил это явление; он также показал особенность стоячих волн на поверхности воды в сосудах, производя колебания посредством трения. Еще дальше пошел его бывший ученик Марен Мерсенн (1588-1648): ему удалось почти в то же время, а именно в 1636 г., дать первое абсолютное определение числа колебаний, измерить скорость звука в воздухе, а также открыть, что струна в большинстве случаев одновременно с основным тоном дает еще гармонические обертоны. Жозеф Совер (1653-1716) сделал те же наблюдения над органными трубами, изучил сущность биений, а также установил на струнах положение узлов и пучностей посредством еще теперь применяемого бумажного «наездника».

Отто Герике доказал экспериментально, что звук, в отличие от света, распространяется не в пустом пространстве. Зависимость скорости звука от сжимаемости и плотности воздуха определил Ньютон в своих «Принципах», хотя его формула была подтверждена опытом лишь тогда, когда в 1826 г. Лаплас заменил изотермическое сжатие адиабатическим. Математическая обработка механики в XVIII столетии была полезна также для акустики. Выдающийся экспериментатор Эрнст Фридрих Хладни (1756-1827) в 1802 г. противопоставил давно известным поперечным колебаниям струн и стержней продольные и крутильные колебания, сделал видимыми в своих «звуковых фигурах» узловые линии колеблющихся пластинок и измерил скорость звука не только в воздухе, но и в других газах. Проводимость звука жидкостями долгое время оспаривалась из-за мнимой их несжимаемости, несмотря на прямое наблюдение, сделанное в 1762 г. Вениамином Франклином (1706-1790). Но в 1827 г. Жан Даниэль Колладон (1802-1892) и Якоб Франц Штурм (1803-1855) дали убедительное доказательство распространения звука в воде, определив скорость звука в Женевском озере и найдя ее равной 1,435 • 105см/сек.

В дальнейшем в течение XIX столетия физическая акустика все больше превращалась в учение об упругих волнах. Из оптики в нее были введены идеи интерференции, диффракции и рассеяния на препятствиях. Принцип Допплера, возникший в 1842 г. как оптическая идея (гл. 6), нашел свое первое подтверждение в изменениях высоты тонов, которые воспринимаются, например, в момент, когда свистящий паровоз, пройдя мимо, начинает удаляться. Аналитический метод Фурье (гл. 7), созданный первоначально для решения проблемы теплопроводности, применялся с огромным успехом для изучения звуковых волн, тем более, что разложение любого периодического колебания на колебания синусоидальные соответствует непосредственной психологической реальности; как установил в 1843 г. Симон Ом (1787-1854), ухо может воспринять эти колебания в отдельности. Если же это не удается из-за врожденной недостаточности или недостаточного упражнения, то эти синусоидальные колебания определяют тембр звучания в смеси тонов, как это подчеркнул Гельмгольц в своем «Учении о звуковых ощущениях» (1862).

Большие технические задачи встали перед акустикой после того, как в 1861 г. Филипп Рейс (1834-1874) и в 1875 г. Александр Грехем Белл (1847-1922) изобрели телефон, а в 1878 г. Давид Юз (1831-1900) существенно улучшил микрофон Рейса. После этого возникла возможность более совершенной передачи человеческих голосов и музыкальных звуков. Передача звука электрическими волнами, плод мировой войны 1914-1918 гг., значительно усилила роль этой новой области технического применения - электроакустики. К этой же области относится фонограф, изобретенный в 1877 г. Томасом Альва Эдисоном (1847-1931).

Во время той же войны Поль Ланжевен (1872-1946), используя пластинки пьезокварца, нашел способ получения в воде звуковых волн с числом колебаний высокого порядка - 100 000 в секунду, следовательно, далеко за пределами слышимости. Этот «ультразвук» должен был служить для нахождения подводных лодок под морской поверхностью. Физика применила его впоследствии для изучения собственных колебаний твердых тел, для измерения скорости звука в газах и жидкостях в зависимости от числа колебаний и в других случаях. Известную роль он играет также в биологии.


ГЛАВА 3

ГРАВИТАЦИЯ И ДАЛЬНОДЕЙСТВИЕ


Исследование гравитации было теснейшим образом связано с возникновением механики. Эта проблема с глубокой древности занимает человеческий ум. Если оставить в стороне атомистику, то, пожалуй, можно сказать, что ни с одним вопросом физики не было связано столько спекуляций, сколько с вопросом о причинах силы тяжести. Тем, что мы действительно об этом знаем, мы обязаны людям, которые ограничивались вопросом: как она действует? Дальше всех здесь пошел Галилео Галилей (1564-1642), который просто допустил, что вблизи земной поверхности тела получают постоянное ускорение, направленное вертикально вниз. Этого было достаточно для вывода его законов падения. Сюда относится также знаменитое ньютоновское «Hypoteses non fingo» в конце его «Principia». Но оба придавали величайшее значение тому, что все тела испытывают одинаковое ускорение, и проверяли это не только в случае свободного падения, но также тогда, когда устанавливали независимость периода маятника от природы колеблющегося тела. Единственно мыслимой противоположностью этого является представление о том, что сила тяжести пропорциональна «тяжелой массе», отличной от инертной массы. Равенство обеих масс является одной из замечательных черт теории тяготения.

Мысль о том, что тяготение не ограничивается частью пространства вблизи Земли, но представляет собой всеобщее свойство материи и действует также между небесными телами, довольно стара. Можно указать на наличие предчувствия этого, например, у Николая Коперника (1473-1543) и Р. Гука. Большим уважением пользовалось в течение XVII столетия - и даже у некоторых людей до конца XVIII столетия - учение великого философа Рене Декарта (1596-1650), который не признавал пустого пространства, считая его «contradictio in adjecto», представлял себе межзвездное пространство наполненным жидкостью, находящейся в вихревом движении и увлекающей за собой плавающие в ней планеты. Ньютон посвятил значительную часть своих «Принципов» гидродинамическому опровержению этой теории.

Когда мы спрашиваем о происхождении закона тяготения, названного по имени Ньютона (сила тяготения пропорциональна массам и обратно пропорциональна квадрату расстояния между ними), то мы можем назвать следующую плеяду ученых: Тихо Браге (1546-1601), которому мы обязаны точными, последовательно проведенными сериями наблюдений над положениями планет; Иоганн Кеплер (1571-1630), который вывел отсюда три названных по его имени закона (эллиптический характер траекторий, равенство площадей, описанных в равные времена радиусом-вектором, и «квадраты времен обращения относятся как кубы больших осей»); он уже, разумеется, как и другие его современники, предполагал уменьшение силы с квадратом расстояния. Наконец, Исаак Ньютон (1643-1727), который доказал этот закон, вычислив на его основе ускорение силы тяжести на земной поверхности и ускорение, которое испытывает Луна; кроме того, он математически вывел законы Кеплера из закона тяготения и своего общего закона движения. Закон по праву носит его имя. Никто из его предшественников не мог математически вывести законы Кеплера и исследовать небольшие отклонения, вызываемые взаимными возмущениями планет, объяснить аномалии движения Луны и сделать понятной их связь с приливами и отливами. Впечатление, которое произвели исследования Ньютона на современников, было огромным. И это вполне понятно. Ведь раньше положения планет считались непосредственным изъявлением божьей воли, а это открытие одним ударом устранило столь почитаемую прежде астрологию. Ничто так не укрепило уважения к молодой физике, как вычисление Ньютоном путей планет. С тех пор естествознание стало огромной духовной силой, которую никакая другая сила не могла безнаказанно игнорировать.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ИСТОРИЯ ФИЗИКИ"

Книги похожие на "ИСТОРИЯ ФИЗИКИ" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Макс Лауэ

Макс Лауэ - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Макс Лауэ - ИСТОРИЯ ФИЗИКИ"

Отзывы читателей о книге "ИСТОРИЯ ФИЗИКИ", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.