» » » » Николай Клягин - Современная научная картина мира


Авторские права

Николай Клягин - Современная научная картина мира

Здесь можно скачать бесплатно "Николай Клягин - Современная научная картина мира" в формате fb2, epub, txt, doc, pdf. Жанр: Философия, издательство Литагент «Логос»439b7c39-76ee-102c-8f2e-edc40df1930e, год 2007. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Николай Клягин - Современная научная картина мира
Рейтинг:
Название:
Современная научная картина мира
Издательство:
Литагент «Логос»439b7c39-76ee-102c-8f2e-edc40df1930e
Жанр:
Год:
2007
ISBN:
5-98704-134-1
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Современная научная картина мира"

Описание и краткое содержание "Современная научная картина мира" читать бесплатно онлайн.



Рассматривается современная научная картина мира, охватывается широчайший спектр данных космогонии, биогенеза, антропогенеза, социогенеза и др. Эти данные настолько разнородны, что подпадают под общий знаменатель только на уровне универсального причинно-следственного закона. Для понимания его происхождения необходимо объяснить, как возникли законы сохранения и неубывания энтропии. Чтобы протянуть нить причинности от физического и астрономического мира к человеческому обществу, нужно осмыслить пути и результаты биоэволюции. Все это дает нам возможность понять, где находится центр Вселенной, как и почему возникли и угасли динозавры, отчего человек единственный на планете обладает наукой и искусством.

Для студентов высших учебных заведений, изучающих курс «Концепция современного естествознания». Может использоваться аспирантами при подготовке к экзамену по кандидатскому минимуму в области истории и философии науки.






Поиск такого центра отталкивается от наблюдения, что Южное полушарие звездного неба ощутимо глубже Северного [546; 695]. Это означает, что на Севере звездной сферы к нам ближе край Вселенной, а на Юге – ее центр. В Южном полушарии звездного неба по направлению к сверхскоплению галактик Гидра-Кентавр на расстоянии ок. 300 млн светолет от нас лежит Великий Аттрактор. Этот объект соответствует 5,4 × 1016 солнечных масс, имеет поперечник в 0,6–6 млн светолет и вдвое превосходит среднюю плотность Вселенной [524; 134; 296; 372, с. 62; 473; 704; 785; 830]; cp. [254].

Сверхмассивный Великий Аттрактор притягивает окружающие скопления галактик, в том числе наше Местное Сверхскопление, которое вместе с соседними сверхскоплениями стремится к Великому Аттрактору («Великому Притяжателю») в составе сверхпотока Персей – Рыбы протяженностью в 423,8 млн светолет [808; 548; 514; 605]. Это означает, что гравитоны Великого Аттрактора успели охватить область Вселенной с диаметром ок. 1 млрд светолет, а стягивающая Вселенную деятельность Великого Аттрактора началась ок. 500 млн лет назад.

Великий Аттрактор отождествляется с рентгеновским галактическим скоплением Абелль 3627, обладающим массой в 5,1 × 1015 солнечных масс и поперечником в 1,956 млн светолет, укладывающимся в поперечник Великого Аттрактора. Абелль 3627 является источником самого яркого рентгеновского потока среди всех известных скоплений (0,1–2,4 кэВ). Его отделяют от нас 303,18 млн светолет [473; 830]. Сравнивая наше расстояние от центра Вселенной (302,375 млн светолет) с расстояниями от Великого Аттрактора (ок. 300 млн светолет) и Абелля 3627 (303,18 млн светолет), мы заключаем, что речь идет об одном и том же образовании, три ипостаси которого выявлены совершенно различными, независимыми методами.

Абелль 3627 в 10 раз уступает расчетной массе Великого Аттрактора, которая определялась гравиметрически (по силе тяжести, т. е. однозначно), в то время как масса Абелля 3627 оценивалась оптически (по внешнему виду, т. е. далеко не однозначно). Расхождение объясняется тем, что 0,9 реальной массы Абелля 3627 состоят из невидимого «темного вещества».

«Холодное темное вещество» не испускает ни тепла, ни света и взаимодействует с обычным «горячим светлым веществом» лишь гравитационно, сильно влияя на движение галактик и их скоплений, но оставаясь невидимым во всех областях спектра. Оно было открыто благодаря одному астрофизическому парадоксу. Наша и другие галактики вращаются столь интенсивно, что центробежная сила могла бы их разметать. Видимой «светлой» массы им совершенно недостаточно, чтобы сцементировать их силой тяжести. Значит, существует некая невидимая «темная» масса, которая восполняет недостачу вещества, необходимого для консолидации галактик силой тяжести. Гравитационные оценки свидетельствуют, что по массе «темное вещество» образует не менее 90% состава Вселенной [333; 431; 581; 617; 629; 664; 739; 760; 783; 785; 795]; cp. [176]. Состав «темного вещества» – проблематичен.

Барионное (кваркосодержащее) «темное вещество» заключено в тусклых холодных белых карликах – это 2% от «темного вещества» галактического гало [604], – а также в МАСНО (массивных, компактных объектах гало планетарных масс), выявляемых методом микролинзирования: в тот момент когда они затмевают внегалактические звезды (галактик Большое Магелланово Облако и М22), те ненадолго ярко вспыхивают, становясь видимыми по обе стороны от затмевающего МАСНО, привлекая наше внимание (МАСНО гравитационно стягивают лучи света от них, выполняя роль маленькой гравитационной линзы, откуда происходит название метода микролинзирования) [133; 376; 665; 666]; cp. [224]. Можно упомянуть еще гипотетические космические струны – сверхмассивные, протяженные объекты замкнутой, петлистой фактуры, сохранившиеся от первой секунды жизни Вселенной, когда они застыли как пограничные состояния ее фазовых переходов (наподобие прожилок на замерзшем стекле, только длиной в световые годы) [22; 132; 167].

В небарионном (бескварковом) «темном веществе» предполагаются аксионы (см. разд. 1.1) [332; 586; 705] и вимпзиллы [360; 376]. Вимпы представляют собой слабо взаимодействующие массивные частицы в 106 ГэВ (гигаэлектронвольт), а вимпзиллы (т. е. вимпы-годзиллы) – это слабо взаимодействующие сверхмассивные частицы в 1012 ГэВ, которые еще предстоит открыть. Сюда же относятся гравитино (см. разд. 1.1) [332; 371, с. 39] и хиггсино (см. разд. 1.1) [371, с. 39; 706]. Называют также нейтралино (суперпартнер фотона со спином 1/2, т. е. аналог фотино, в 10–1000 масс протона) [760] и само фотино в 100 масс протона (см. разд. 1.1) [332; 371, с. 39; 705; 706; 725]. Наконец, популярны снейтрино [371, с. 39], таунейтрино с массой в 17–17,2 кэВ или 15–10000 ГэВ [303; 343; 376; 513; 528; 530; 673; 706; 739] и электронное нейтрино с массой от менее 7 эВ до 30 эВ [740; 760] (см. разд. 1.1).

Перечисленные микрообъекты занесены в состав «темного вещества» как бы наудачу, в ожидании наблюдательных открытий [725]. Между тем обобщенный подход имеется в теории суперструн, где «темному веществу» соответствует «теневое вещество» Е8' из калибровочной группы Е8 × Е8', в которой группа Е8 описывает мир обычного, «светлого вещества» [9, с. 520; 122, с. 583; 472]. Напомним, что калибровочные группы служат математической основой для принятия «к производству» не произвольного набора объектов и их свойств, а их некой математически обоснованной матрицы вроде таблицы умножения. Поскольку вездесущим фоном нашего мира «светлого вещества» является известное реликтовое микроволновое излучение, наполняющее космос и состоящее из фотонов с температурой в 2,726 ± 0,01 К [705; 760], то фоном невидимого мира «темного вещества» могло бы оказаться фотино, и без того присутствующее среди кандидатов на эту грозную роль.

Причину сокрытости от нас «холодного темного вещества» можно понять. Допустим, оно действительно состоит из суперчастиц (в том числе фотино), для которых единодушно предполагается значительная индивидуальная масса. Тогда сопоставимое с числом «светлых» частиц количество «темных» суперчастиц должно быть в несколько раз массивнее, что объясняет тот факт, что оценочная масса «темного вещества» достигает 90–99% массы всей Вселенной, в то время как на долю «светлого вещества» приходится 1–10%.

Следует также отметить, что, помимо гравитонов, «темное вещество» не испускает иных излучений, в том числе электромагнитных, световых, откуда происходит его мрачное название. Причина может состоять в следующем. Суперчастицы очень массивны, и радиусы их взаимодействий крайне малы (см. разд. 1.1). В силу этого обстоятельства суперчастицы не в состоянии взаимодействовать со «светлым» веществом, образовывать с ним комбинации, склонные излучать фотоны (как свойственно всякому «светлому веществу»), обнаруживать себя оптически или же путем магнетизма, т. е. слабых и сильных взаимодействий. Поэтому, даже находясь рядом с нами, «темное вещество» останется неощутимым.

Таким образом, версия «темного вещества», состоящего из суперчастиц, представляется наиболее простой и убедительной, поскольку органично встраивается в современную научную картину физического мира. Другое дело, что природа «темного вещества» не облегчает задачу его эмпирического обнаружения, так как экспериментальное проникновение в мир суперчастиц с малыми радиусами взаимодействий требует больших энергий.

Зная отношение вселенской массы «светлого вещества» к массе «темного» (ок. 0,1–0,01), мы в состоянии предположить порядок масс отдельных суперчастиц (см. рис. 1). В принципе, их массы могут колебаться от 0,7–7,0 эВ у сэлектронного снейтрино до 1780–17800 ГэВ у истинного скварка. По-видимому, подобные объекты не в силах образовывать привычные нам формы вещества (нуклоны, атомы, молекулы), так как требуют очень высоких энергий для своего сближения, а в современной холодной Вселенной таких энергий нет. Если же они появятся, мощи сильного взаимодействия не хватит, чтобы удерживать суперчастицы в ансамблях, вследствие чего они и не сложились на заре горячей Вселенной. Из сказанного следует, что мир «темного вещества» чужд миру «светлого» в силу отсутствия организации, отчего «темный мир» представляется этаким холодным древним хаосом, о присутствии которого во Вселенной догадывались уже первобытные охотники.

Разделение громадного «темного» и крохотного «светлого» миров началось 13,(3) млрд лет назад, когда чередование событий измерялось мельчайшими планковскими квантами времени, меньше которых не существует единиц измерения времени по квантово-механическим причинам, – это 5,4 × 10–44 с. На заре нашего мира Вселенная пребывала в форме сингулярности (см. разд. 1.3). Затем она распалась на суперточки (см. разд. 1.1), которые превратились в трепещущие суперструны, что явилось первым проявлением термодинамики во Вселенной. Термодинамика – это наука о динамических состояниях макроскопических систем, и на заре времен начало им было положено хаотичным биением юных суперструн, рождающих закон неубывания энтропии (см. разд. 1. 4).


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Современная научная картина мира"

Книги похожие на "Современная научная картина мира" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Николай Клягин

Николай Клягин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Николай Клягин - Современная научная картина мира"

Отзывы читателей о книге "Современная научная картина мира", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.