Карл Маркс - Собрание сочинений, том 20

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Собрание сочинений, том 20"
Описание и краткое содержание "Собрание сочинений, том 20" читать бесплатно онлайн.
Двадцатый том Сочинений К. Маркса и Ф. Энгельса составляют два главных произведения Энгельса — «Анти-Дюринг» и «Диалектика природы». Эти произведения были созданы в период с 1873 по 1883 год.
Так, например, Томсон и Тейт, «Трактат о натуральной философии», Оксфорд, 1867[318], стр. 162:
«Количество движения, или момент, твердого тела, движущегося без вращения, пропорционально его массе и вместе с тем его скорости. Двойная масса или двойная скорость будут соответствовать двойному количеству движения».
И тотчас же вслед за этим:
«Живая сила, или кинетическая энергия, движущегося тела пропорциональна его массе и вместе с тем квадрату его скорости».
В такой совершенно грубой форме ставятся рядом друг с другом две противоречащие друг другу меры движения, причем не делается ни малейшей попытки объяснить это противоречие или хотя бы затушевать его. В книге этих двух шотландцев мышление запрещено; здесь разрешается лишь производить вычисления. Ничего нет поэтому удивительного, что по крайней мере один из них — Тейт — принадлежит к право-вернейшим христианам правоверной Шотландии.
В лекциях Кирхгофа по математической механике[319] формулы mv и mv2 вовсе не встречаются в этой форме.
Может быть, нам поможет Гельмгольц. В сочинении о сохранении силы[320] он предлагает выражать живую силу через mv2/2 — пункт, к которому мы еще вернемся. Затем (на стр. 20 и следующих) он вкратце перечисляет случаи, в которых до сих пор уже применяли и признавали принцип сохранения живой силы (т. е. mv2/2). Сюда относится под № 2:
«Передача движений несжимаемыми твердыми и жидкими телами, если при этом не имеет места трение или удар неупругих веществ. Наш общий принцип обычно выражается для этих случаев в виде правила, что движение, передаваемое и видоизменяемое механическими приспособлениями, всегда настолько же теряет в интенсивности силы, насколько приобретает в скорости. Поэтому если мы представим себе, что некий груз т поднимается вверх со скоростью с при помощи машины, в которой путем какого-нибудь процесса равномерно порождается работа, то при помощи другого механического приспособления можно будет поднять груз nm, но лишь со скоростью %, так что в обоих случаях можно представить величину силы напряжения, создаваемой машиной в единицу времени, через mgc, где g означает интенсивность силы тяжести» [стр. 21].
Таким образом, и здесь перед нами то же самое противоречие, состоящее в том, что «интенсивность силы», убывающая и возрастающая в простом отношении к скорости, должна служить доказательством сохранения интенсивности силы, убывающей и возрастающей соответственно квадрату скорости.
Правда, здесь обнаруживается, что mv и mv2/2 служат для определения двух совершенно различных процессов; но ведь это мы знали уже давно, ибо mv2 не может равняться mv, за исключением того случая, когда v=1. Задача состоит в том, чтобы выяснить себе, почему движение обладает двоякого рода мерой, что так же недопустимо в науке, как и в торговле. Попробуем, следовательно, разобраться в этом иным путем.
Итак, через mv измеряется «движение, передаваемое и видоизменяемое механическими приспособлениями»; таким образом, эта мера применима к рычагу и всем производным от него формам, колесам, винтам и т. д., — короче говоря, ко всем механическим приспособлениям, передающим движение. Но одно весьма простое и вовсе не новое рассуждение показывает, что здесь в той же мере, в какой имеет силу mv, имеет силу и mv2. Возьмем какое-нибудь механическое приспособление, в котором плечи рычагов относятся друг к другу, как 4:1, в котором, следовательно, груз в 1 кг уравновешивает груз в 4 кг. Приложив совершенно ничтожную добавочную силу к одному плечу, мы можем поднять 1 кг на 20 м; та же самая добавочная сила, приложенная затем к другому плечу, поднимет 4 кг на 5 м, и притом груз, получающий перевес, опустится в то же самое время, какое другому грузу потребуется для поднятия. Массы и скорости здесь обратно пропорциональны друг другу: mv 1x20=m'v", 4x5. Если же мы предоставим каждому из грузов — после того как они были подняты — свободно упасть на первоначальный уровень, то груз в 1 кг, пройдя расстояние и 20м, приобретет скорость в 20 м (мы принимаем здесь ускорение силы тяжести равным в круглых цифрах 10м вместо 9,81); другой же груз, в 4 кг, пройдя расстояние в 5 м, приобретет скорость в 10м.[321]
mv2 = 1x20x20 = 400 =m'v'2 = 4 x 10 x 10 = 400.
Наоборот, времена падения здесь различны: 4 кг проходят свои 5 м в 1 секунду, а 1 кг свои 20 м в 2 секунды. Само собой разумеется, мы здесь пренебрегли влиянием трения и сопротивления воздуха.
Но после того как каждое из обоих тел упало со своей высоты, его движение прекращается. Таким образом, mv оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения, а mv2 оказывается мерой исчезнувшего механического движения.
Далее, в случае удара вполне упругих тел имеет силу то же самое: сумма произведений массы на скорость, как и сумма произведений массы на квадрат скорости, оказывается неизменной как до удара, так и после него. Обе меры имеют здесь одинаковую силу.
Иначе обстоит дело в случае удара неупругих тел. Здесь ходячие элементарные учебники (высшая механика почти совершенно не занимается больше подобными мелочами) утверждают, что сумма произведений массы на скорость как до, так и после удара одна и та же. Зато здесь происходит, дескать, потеря в живой силе, ибо если вычесть сумму произведений массы на квадрат скорости после удара из суммы их до удара, то остается некоторый при всех обстоятельствах положительный остаток; на эту величину (или на ее половину, в зависимости от точки зрения) и уменьшается живая сила благодаря взаимному проникновению и изменению формы соударяющихся тел. — Это последнее ясно и очевидно. Не так очевидно первое утверждение, а именно, что сумма произведений массы на скорость после удара остается такой же, как и до удара. Живая сила есть, вопреки Зутеру, движение, и когда теряется часть ее, то теряется движение. Таким образом, либо mv неправильно выражает здесь общее количество движения [Вewegungsmenge], либо вышеприведенное утверждение ошибочно. Вообще вся эта теорема является наследием того времени, когда еще не имели никакого представления о превращении движения, когда, следовательно, исчезновение механического движения признавалось лишь там, где этого нельзя было не признать. Так, здесь равенство суммы произведений массы на скорость до удара и после него доказывается на основании того, что эта сумма нигде ничего не теряет и не приобретает. Но если тела благодаря внутреннему трению, соответствующему их неупругости, теряют живую силу, то они теряют также и скорость, и сумма произведений массы на скорость должна после удара быть меньше, чем до него. Ведь нелепо игнорировать внутреннее трение при вычислении ти, когда оно так явственно обнаруживает свое значение при вычислении mv2.
Впрочем, это не составляет никакой разницы: даже если мы примем эту теорему и станем вычислять скорость после удара, исходя из допущения, что сумма произведений массы на скорость осталась неизменной, даже и в этом случае мы найдем, что сумма произведений массы на квадрат скорости убывает. Таким образом, mv и mv2 оказываются здесь в несогласии друг с другом, и именно на величину действительно исчезнувшего механического движения. И само вычисление доказывает, что сумма произведений массы на квадрат скорости выражает общее количество движения правильно, а сумма произведений массы на скорость — неправильно.
Таковы приблизительно все случаи, в которых употребляется в механике mv. Рассмотрим теперь несколько случаев, в которых применяется mv2.
Когда ядро вылетает из пушки, то при своем полете оно потребляет количество движения, пропорциональное mv2, все равно, ударится ли оно в твердую мишень или же перестанет двигаться благодаря сопротивлению воздуха и силе тяжести. Если железнодорожный поезд сталкивается с другим, стоящим неподвижно поездом, то сила столкновения и соответствующее разрушение пропорциональны его mv2. Точно так же мы имеем дело с mv2при вычислении всякой механической силы, потребной для преодоления некоторого сопротивления.
Но что собственно значит это удобное и столь распространенное среди механиков выражение: преодоление некоторого сопротивления?
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Собрание сочинений, том 20"
Книги похожие на "Собрание сочинений, том 20" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Карл Маркс - Собрание сочинений, том 20"
Отзывы читателей о книге "Собрание сочинений, том 20", комментарии и мнения людей о произведении.