» » » » Александр Потупа - Бег за бесконечностью


Авторские права

Александр Потупа - Бег за бесконечностью

Здесь можно скачать бесплатно "Александр Потупа - Бег за бесконечностью" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Молодая гвардия, год 1977. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Потупа - Бег за бесконечностью
Рейтинг:
Название:
Бег за бесконечностью
Издательство:
Молодая гвардия
Год:
1977
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Бег за бесконечностью"

Описание и краткое содержание "Бег за бесконечностью" читать бесплатно онлайн.



В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.






Замечательные превращения некоторых теоретических гипотез в почти достоверные факты и составляют суть «феномена предоткрытия». Предварительность, явно звучащая в этом термине, не случайна. Многие предоткрытия, даже попавшие на страницы учебников в качестве прописных истин, так и не избавились от приставки «пред». Последующие эксперименты их не подтвердили, и они были забыты так же прочно, как и рядовые неудачные предсказания. С примерами на эту тему нам еще предстоит встретиться, а пока обратимся к рассказу о более счастливых ситуациях.

На арене появляются фотон и протон

На роли патриархов физики элементарных частиц наряду с электроном претендуют, по крайней мере, еще две частицы — фотон и протон. Помимо многих и весьма разнообразных заслуг перед наукой, они представляют собой превосходные образцы объектов, предоткрытых задолго до непосредственного экспериментального обнаружения.

В последние десятилетия прошлого века было установлено, что поверхности любых металлов способны испускать поток отрицательно заряженных лучей не только под действием разности потенциалов, но и при сильном их разогреве или при падении на их поверхность света. Эти явления были названы термоэлектрическим и фотоэлектрическим эффектами соответственно. Сразу же вслед за разгадкой природы катодных лучей исследователи доказали, что оба указанных эффекта тоже сводятся к испусканию потока электронов.

Таким образом, на пороге XX века в физику вошло довольно ясное представление об электроне как о непременной составляющей структуры вещества. Действительно, практически любой доступный экспериментатору образец вещества можно было заставить испускать поток электронов, подействовав одним из трех факторов: разностью потенциалов, теплом или светом. В общем, была понятна и роль каждого из этих факторов — они представляли собой просто разные способы сообщить электрону, заточенному в веществе, некоторую энергию, необходимую для его вызволения. Но разве физики могут удовлетвориться только таким, чисто качественным объяснением! Необходимо было согласовать основные закономерности всех эффектов с существовавшей в то время теорией. Но именно на этом пути исследователи столкнулись с неожиданными и, казалось бы, непреодолимыми препятствиями.

Надо сказать, что как раз на рубеже столетий произошло крайне важное для теоретической физики событие — окончательно оформилась классическая электродинамика, претендовавшая на полное и последовательное описание электрических и магнитных явлений. Великая заслуга создателей этой науки английских физиков М. Фарадея и Дж. Максвелла состояла в том, что они ввели в рассмотрение новый объект, особое состояние материи — электромагнитное поле. Благодаря этому все известные электрические, магнитные и даже световые явления можно было свести к нескольким фундаментальным законам распространения электромагнитного поля в пространстве и его взаимодействия с электрическими зарядами. После того, как на арену физических исследований вышла первая элементарная частица — электрон, усилия теоретиков и экспериментаторов сосредоточились на поиске конкретных закономерностей его поведения под действием электромагнитного поля.

Этот пункт оказался своеобразным средоточием веры и надежды. Физики верили в классическую электродинамику, которая позволила единым образом описать десятки разрозненных фактов в блестящем согласии с опытными данными. Поэтому они вполне серьезно надеялись на успех теории и в применении к электронам. Дело было, конечно, не только в простой надежде на успех. Вопрос ставился принципиально: справится ли существующая теория с описанием взаимодействия электромагнитного поля с электроном — мельчайшей структурной составляющей вещества? Положительный ответ на этот вопрос оказался бы величайшим триумфом теории, а отрицательный — наносил непоправимый ущерб ее основам.

В такой ситуации подробное изучение фотоэффекта давало физикам исключительную возможность для экспериментальной проверки теоретических предсказаний. Согласно классической электродинамике свет представляет собой совокупность электромагнитных волн — именно в форме волн проявляется электромагнитное поле в этом случае. Всякую волну можно характеризовать, например, интенсивностью и частотой (или величиной, обратно пропорциональной частоте, — длиной волны). Чем интенсивней поле, тем больше энергии оно несет. Что же происходит во время фотоэффекта?

Чтобы вырвать с поверхности металла электрон, каким-то образом связанный с остальными элементами вещества, электромагнитная волна должна «накачивать его энергией» до тех пор, пока эта связь не порвется, то есть кинетическая энергия электрона превзойдет по абсолютной величине его потенциальную энергию. После этого электрон покидает образец вещества с некоторой скоростью. В такой картине ясно, что чем интенсивней свет, тем большую энергию способен он передать электрону и тот будет вылетать из образца с большей скоростью.

Между тем экспериментальные данные по фотоэффекту давали совсем иную, весьма странную с точки зрения электродинамики картину. Начнем с того, что от интенсивности света, падающего на образец вещества, зависело только количество вылетающих электронов. Чем более интенсивный источник света использовался в опыте, тем больше электронов вылетало, тем сильней был вызываемый ими ток, регистрировавшийся специальным устройством. Скорость же электронов (или их кинетическая энергия) зависела только от длины волны падающего света! Удивительная ситуация — в результате облучения металлического образца, скажем, синим светом, электроны вылетали бы со значительно большими скоростями, чем в случае облучения красным светом. Но какова связь между окраской света и энергией, которую он передает электронам?

Известно было, что электромагнитные волны, соответствующие красному цвету, имеют большую длину волны, чем «синие» волны, то есть меньшую частоту. Но опять-таки классическая электродинамика не могла уловить связь между частотой я энергией.

Создалось весьма странное положение. С одной стороны, перед физиками лежала простая закономерность, добытая опытным путем: кинетическая энергия вылетающих электронов пропорциональна частоте света, которым облучают образец вещества. С другой стороны — превосходная теория, объяснившая десятки гораздо более сложных явлений, здесь, в простейшем, казалось бы, но чрезвычайно важном случае, совершенно бессильна… Естественный и очень красивый выход был предложен в 1905 году двадцатишестилетним А. Эйнштейном.

Этот год стал звездным не только для скромного клерка Швейцарского патентного бюро, успевшего буквально за несколько месяцев написать основополагающие статьи по квантовой теории и теории относительности, но и для всей физики XX века. Одна из этих статей и была посвящена разрешению загадок фотоэффекта.

А. Эйнштейн предположил, что поток электромагнитного излучения, падающий на поверхность вещества, можно представить как совокупность отдельных частиц — световых квантов; причем энергия каждого кванта пропорциональна частоте света или, что то же самое, обратно пропорциональна длине волны. Это была воистину революционная идея, так как очень уж трудно совместить друг с другом противоположные представления- непрерывная, плавно меняющаяся в пространстве волна и поток частичек, несущих определенные энергию и импульс и занимающих каждая небольшую область пространства…

Каждый из вас, наверное, наблюдал такую приятную картину. Ленивая волна набегает на берег. В песке лежит небольшой камень, набегающая волна раскачивает его, камень сначала немного сдвигается в сторону берега, потом возвращается вместе с водой. Через некоторое время волны могут либо окончательно вытолкнуть его на берег, либо утащить с собой на «дно морское». Но вот подбежал мальчишка-озорник и швырнул горсть камешков в сторону моря. Они не долетели до воды, врезались в самую кромку волн. Представьте себе, что камешки были брошены довольно сильно и один из них попал в тот самый камень, за колебаниями которого вы так долго следили. От сильного удара он сорвался с места и сразу же исчез под водой.

Нечто подобное должно было происходить и при падении света на вещество. Вместо длительного раскачивания электрона — мгновенное соударение, в котором квант света (это и есть новая элементарная частица) передает электрону энергию, необходимую для того, чтобы тот порвал связи с атомом и вылетел на свободу. Так получается потому, что электрон очень мал и «чувствует» зернистую структуру электромагнитного излучения, прерывистость электромагнитного поля. Когда же мы рассматриваем задачу о падении электромагнитных волн на большой и тяжелый объект, картина снова будет соответствовать представлению о непрерывном, плавно меняющемся поле.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Бег за бесконечностью"

Книги похожие на "Бег за бесконечностью" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Потупа

Александр Потупа - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Потупа - Бег за бесконечностью"

Отзывы читателей о книге "Бег за бесконечностью", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.