» » » » Дайана Халперн - Психология критического мышления


Авторские права

Дайана Халперн - Психология критического мышления

Здесь можно скачать бесплатно "Дайана Халперн - Психология критического мышления" в формате fb2, epub, txt, doc, pdf. Жанр: История, издательство Издательство "Питер", год 2000. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Дайана Халперн - Психология критического мышления
Рейтинг:
Название:
Психология критического мышления
Издательство:
Издательство "Питер"
Жанр:
Год:
2000
ISBN:
ISBN 5-314-00122-5
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Психология критического мышления"

Описание и краткое содержание "Психология критического мышления" читать бесплатно онлайн.



Эта книга написана в помощь тем, кто хочет научиться думать современно. Опираясь на новейшие достижения когнитивной психологии и свой уникальный педагогический опыт, Дайана Халперн разработала эффективную программу обучения навыкам «критического мышления». Данная книга может быть широко использована в преподавательской и методической работе, окажет неоценимую помощь в самообразовании, а кроме того, является своеобразным путеводителем по современной когнитивной психологии. Рекомендуется психологам, педагогам, философам, а также всем интересующимся когнитивной психологией, психологией творчества, теорией принятия решений.






Давайте рассмотрим другой пример. Какова вероятность выпадения пяти при одном броске игральной кости? Поскольку 5 может выпасть только одним способом, числитель вероятностной дроби будет равен 1. Игральная кость – это шестигранный куб; поэтому при броске существует шесть возможных исходов. Если кость не «утяжелена» – т.е. может упасть любой стороной вверх с одинаковой вероятностью, – вероятность выпадения пяти равна 1/6 или примерно 17%.

Какова вероятность выпадения четного числа при одном броске «честной» кости? Чтобы найти ее, рассмотрим количество способов, которыми можно прийти к успеху. Может выпасть 2, 4 или 6 – других возможных четных чисел нет. Таким образом, к успеху можно прийти тремя способами из шести равновероятных исходов, поэтому вероятность выпадения четного числа равна 3/б = ?.

Какова вероятность выпадения целого числа меньше семи? Если бы меня попросили поставить на это событие, я бы поставила свой дом, своих детей и все свои скромные сбережения. Другими словами, я ручаюсь, что это обязательно произойдет. Давайте выясним, почему. Количество способов, которыми при одном броске кости может выпасть число меньше семи, равно шести (1, 2, 3, 4, 5 или 6), и число возможных исходов равно шести. Таким образом, вероятность равна 6/6 или 1. Когда вероятность равна 1 (или 100%), событие должно произойти; оно достоверно.

Какова вероятность выпадения восьми при одном броске кости? Я бы снова поставила все, что имею, но только против того, что это произойдет. Количество способов, которыми может выпасть 8, равно 0. Следовательно, вероятность этого события равна нулю; это событие невозможно. Такая ситуация также отражает полную определенность. Значения вероятности находятся в диапазоне от 0 (событие не может произойти) до 1 (событие должно обязательно произойти). Значения вероятности, близкие к 0 или 1, характеризуют события, которые почти точно не произойдут или почти точно произойдут, в то время как значения, близкие к 0,5 (50%), отражают максимальную неопределенность, поскольку равновероятны оба исхода, и поэтому нет оснований предсказывать наступление одного из них. Эти соотношения иллюстрирует рис. 7.1.

Шансы

Часто удобно обсуждать вероятности, пользуясь понятием «шансы». Допустим, ваш друг говорит, что шансы футбольной команды его школы победить команду вашей школы равны 1 к 3. Он ожидает, таким образом, что если бы было проведено четыре игры, то его команда выиграла бы три из них. Обычно знатоки спорта (спортивные комментаторы, редакторы спортивных газет и просто болельщики) выражают степень своей уверенности в исходе спортивных состязаний, пользуясь терминологией шансов. (Ставки, которые принимаются на скачках и матчах по боксу, отражают количество денег, поставленное на каждого претендента, и, следовательно, их смысл несколько отличается от описанного выше.)

Чтобы перевести шансы в вероятности, сложите два приведенных числа (например, 3:1 = 4), возьмите первое число в качестве числителя, а полученную сумму в качестве знаменателя (3/4) и вы получите эквивалентную вероятность.


Законы случая


Самыми важными в последнем разделе были слова «в достаточно протяженном интервале времени». Кроме особых случаев, когда вероятность исхода равна 0% или 100%, мы не можем с определенностью сказать, что произойдет в каждый конкретный момент. Бросая кость, я не знаю, выпадет ли 5, но если я буду бросать «честную» кость много-много раз, я знаю, что 5 будет выпадать примерно в 17% случаев. Я не знаю, при каких именно бросках будет выпадать 5, но я приблизительно знаю, сколько испытаний окончатся выпадением 5, если я буду бросать кость в течение долгого времени. Это важно отметить. Когда мы говорим о законах случая (или законах вероятностей), мы имеем в виду способность предсказывать долю или процент попыток, которые будут иметь данный исход. При большом количестве попыток я могу очень точно предсказать количество появлений данного исхода, но я не могу знать, какие именно попытки дадут этот исход. Это означает, что я могу делать хорошие «долгосрочные прогнозы» и плохие «краткосрочные» прогнозы.


Пример



Рис 7.1. Вероятность и достоверность.


Давайте разберемся в этих различиях на примере страхования. Когда вы страхуете свою жизнь (или что-либо еще), вы заключаете пари со страховой компанией. Вы соглашаетесь ежегодно платить страховой компании определенную сумму. Она соглашается выплатить вашим наследникам определенную сумму, когда вы умрете. Существует много различных видов полисов страхования жизни, но в наших целях нам достаточно рассмотреть простейший из них. Для демонстрации статистических идей я воспользуюсь простыми числами – в реальной жизни затраты и выплаты не такие, как в этом примере. Предположим, что вам 30 лет и вы согласились платить страховой компании 1000 долларов в год. Когда вы умрете, ваши наследники получат 20 000 долларов. Вы ставите на то, что умрете в довольно молодом возрасте (пари, которое вы надеетесь проиграть), так что вы выплатите компании лишь небольшую часть суммы, которую затем получат ваши наследники. Если вы умрете, не дожив до 50 лет, то вы выиграете. Если не обращать внимания на такие усложняющие вычисления факторы, как инфляция и проценты с капитала, то, скончавшись в молодом возрасте, вы заплатите меньше тех 20 000 долларов, которые получат ваши наследники. С другой стороны, страховая компания выиграет, если вы доживете до глубокой старости. Если вы умрете в возрасте семидесяти лет, то заплатите компании 40 000 долларов, а ваши близкие получат только 20 000.

Страховые компании зарабатывают деньги на законах случая (законах вероятностей). Никто не знает, когда умрете вы или кто-либо другой, но страховые компании знают примерное число тридцатилетних людей (возраст, когда вы купили свой полис), которые умирают, не дожив до пятидесяти. Таким образом, хотя никто не может точно предсказать, в каком возрасте умрет тот или иной человек, мы можем пользоваться законами случая для прогнозирования числа людей, которые доживут до того или иного конкретного возраста.

Степени уверенности

Вероятностями иногда пользуются для выражения степени уверенности в появлении какого-либо исхода. Это второе определение термина «вероятность». Например, если вы поступаете на работу и уверены, что интервью прошло хорошо, вы можете оценить вероятность того, что вас примут на эту работу, как 80%. Это значение вероятности не было получено путем математических вычислений, т. е. делением числа способов, которыми можно прийти к успеху, на общее число возможных исходов. Вместо этого данное значение отражает степень вашей уверенности в том, что вас примут на работу. Оно означает уровень уверенности в пределах от среднего до высокого. Если другой человек, проходивший интервью для получения того же места, считает, что его шансы получить работу равны 50%, очевидно, что он менее вас уверен в положительном исходе.

Особенно часто вероятности используются для выражения степени уверенности в определенном исходе в предвыборное время. Политические обозреватели часто приписывают вероятностные значения вероятности избрания того или иного кандидата. Если обозреватель прогнозирует, что шансы кандидата победить равны 30%, это означает, что, хотя этот кандидат может победить на выборах, обозреватель считает, что скорее всего он проиграет. Вероятностные значения – удобный способ количественного выражения уверенности в исходе.


Факторы, влияющие на суждения о вероятности и неопределенности


Шансы против того, что в самолете находится бомба, равны миллион к одному, а против того, что в самолете две бомбы – миллион миллионов к одному. В следующий раз, когда вы полетите на самолете, возьмите с собой бомбу, чтобы уменьшить шансы ее появления в самолете.

Бенни Хилл (цит. по Byrn, 1988, р. 349)

Существует обширная литература, подтверждающая тот факт, что большинство людей ошибается при оценке вероятности. Мы не можем постичь природу случайностей и из-за этого имеем весьма неверные представления о вероятностях и неопределенности (Garfield Ahlgren, 1988). Это не удивительно, если учесть, что мы можем пользоваться вероятностями только для понимания «долгосрочных» событий, а большая часть нашего повседневного опыта основана на краткосрочных наблюдениях. Например, существует большое количество данных, показывающих, что, в среднем, курящие люди умирают в более раннем возрасте, чем те, кто не курит (Paulos, 1994). Большинство из нас не может открыть для себя эту связь, потому что мы не знаем, в каком возрасте умирает большая часть курящих, но мы знаем одного или двух человек, которые выкуривали по две пачки в день и дожили до 90 лет. Такого рода личный опыт заставляет нас сомневаться в статистических данных, собранных в результате наблюдений за многими людьми. Мысль, которая проводится уже в нескольких главах моей книги, заключается в том, что личный опыт не является веским основанием для вынесения многих суждений о мире. Как вы помните из предыдущей главы, обучение на опыте дорого обходится.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Психология критического мышления"

Книги похожие на "Психология критического мышления" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Дайана Халперн

Дайана Халперн - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Дайана Халперн - Психология критического мышления"

Отзывы читателей о книге "Психология критического мышления", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.