» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






Ахилл: Как насчет 15?

Черепаха: Превосходно. Вы начинаете с вашего числа; если оно НЕЧЕТНО, вы умножаете его на три и прибавляете 1. Если оно ЧЕТНО, вы берете его половину. После этого мы повторяем процесс. Назовем число, которое таким образом рано или поздно превратится в 1, ИНТЕРЕСНЫМ, и число, которое не станет 1, НЕИНТЕРЕСНЫМ.

Ахилл: Интересное ли число 15? Посмотрим:

15 НЕЧЕТНО, так что я превращаю его в 3n + 1: 46

46 ЧЕТНО, так что я делю его на два: 23

23 НЕЧЕТНО, так что я превращаю его в Зn + 1: 70

70 ЧЕТНО, так что я делю его на два: 35

35 НЕЧЕТНО, так что я превращаю его в Зn + 1: 106

106 ЧЕТНО, так что я делю его на два: 53

53 НЕЧЕТНО, так что я превращаю его в Зn + 1: 160

160 ЧЕТНО, так что я делю его на два: 80

80 ЧЕТНО, так что я делю его на два: 40

40 ЧЕТНО, так что я делю его на два: 20

20 ЧЕТНО, так что я делю его на два: 10

10 ЧЕТНО, так что я делю его на два: 5

5 НЕЧЕТНО, так что я превращаю его в Зn + 1: 16

16 ЧЕТНО, так что я делю его на два: 8

8 ЧЕТНО, так что я делю его на два: 4

4 ЧЕТНО, так что я делю его на два: 2

2 ЧЕТНО, так что я делю его на два: 1.

Ух ты! Ничего себе путешествьице, от 15 до 1! Но я все же достиг цели. Это значит, что 15 обладает свойством «интересности». Хотелось бы узнать, какие числа НЕинтересные…

Черепаха: Вы заметили, что в этом простом процессе числа то возрастают, то уменьшаются?

Ахилл: Я особенно удивился, когда после 13 шагов я получил 16 — число, всего на 1 большее того , с которого я начал! В каком-то смысле, я почти вернулся к началу — но в другом смысле, я был весьма далек от начала. Странно и то, что чтобы решить задачку, мне пришлось добраться до 160. Интересно, почему так получилось?

Черепаха: Потому что потолок у этой задачки бесконечно высок, и заранее невозможно сказать, как высоко нам придется забраться. На самом деле, возможно, что вам придется все время карабкаться вверх, и вверх, и вверх, и никогда не спускаться больше, чем на несколько шагов.

Ахилл: Правда? Наверное, такое возможно — но что за странным совпадением это было бы! Для этого нам должны все время попадаться нечетные числа, за редким исключением. Сомневаюсь, чтобы такое было возможно, хотя, конечно, я не мог бы в этом поклясться.

Черепаха: Проверьте-ка число 27. Имейте в виду, я ничего не обещаю. Но все-таки попробуйте когда-нибудь — просто так, для развлечения. И я посоветовала бы вам запастись для этого большим листом бумаги.

Ахилл: Гммм… Интересно… Знаете, мне все еще кажется странным ассоциировать интересность (или неинтересность) с начальным числом, поскольку совершенно ясно, что это — свойство всей системы чисел.

Черепаха: Я понимаю, что вы имеете в виду, но это ничем не отличается от высказывания «29 — простое число» или «золото — дорогой металл». Оба утверждения приписывают единственному объекту свойство, которым тот обязан контексту целой системы.

Ахилл: Вы, наверное, правы. Проблема «интересности» весьма непроста, так как величина чисел все время колеблется, то возрастая, то уменьшаясь. Здесь ДОЛЖНА быть какая-то регулярность, хотя на вид это выглядит довольно хаотично. Прекрасно понимаю, почему еще никто до сих пор не нашел для «интересности» такой процедуры проверки, которая обязательно кончается.

Черепаха: Кстати о кончающихся и некончающихся процедурах — это мне напоминает об одном из моих друзей; он сейчас работает над своей книгой.

Ахилл: Ах, как занимательно! Как же она называется?

Черепаха: «Медь, серебро, золото — этот неразрушимый сплав». Не правда ли, звучит интересно?

Ахилл: Честно говоря, я что-то не совсем понимаю. Что общего между собой у меди, серебра и золота?

Черепаха: Это ясно, как день.

Ахилл: Вот если бы книга называлась «Гориллы, серебро, золото» или «Эму, золото…» — тогда бы я еще мог понять…

Черепаха: Может быть, вы предпочли бы «Медь, серебро, бабуины»?

Ахилл: Безусловно! Но это действительное название какое-то совсем слабенькое. Никто его не поймет.

Черепаха: Я скажу моему другу. Он (как и его издатель) будет только рад поменять название на более завлекательное.

Ахилл: Приятно слышать. Но почему наш разговор напомнил вам об этой книге?

Черепаха: Ах, да. Видите ли, там будет Диалог, в котором автор постарается запутать читателей, заставив их искать конец.

Ахилл: Забавно. Как же он это сделает?

Черепаха: Вы, безусловно, замечали, как некоторые писатели стараются наращивать напряжение поближе к концу своих историй — но читатель, держа книгу в руках, ЗНАЕТ, что рассказ подходит к концу. Таким образом, у него есть дополнительная информация, которая действует как предупреждение. Напряжение и неизвестность немного подпорчены физической сущностью книги. Было бы гораздо лучше, если бы в конце романов писатели оставляли прокладку потолще.

Ахилл: Прокладку?

Черепаха: Именно; я имею в виду кучу печатных страниц, не имеющих никакого отношения к истории, но маскирующих ее скорое окончание.

Ахилл: А-а, понятно. Таким образом конец истории может отстоять на, скажем, пятьдесят или даже сто страниц от последней страницы книги?

Черепаха: Да. Это привнесло бы некоторый элемент сюрприза, поскольку читатель не будет знать заранее, сколько страниц относятся к прокладке и сколько — собственно к истории.

Ахилл: Такая система была бы эффективной, если бы не есть одна проблема. Представьте себе, что ваша прокладка была бы очевидной — скажем, чистые страницы, куча «А» или случайные буквы. Тогда она была бы совершенно бесполезной.

Черепаха: Согласна. Она должна быть похожа на обычные печатные страницы.

Ахилл: Но даже беглого взгляда на страницу из какой-либо истории зачастую хватает, чтобы отличить ее от страницы из другой истории.

Черепаха: Это верно. Я всегда представляла это так: вы кончаете одну историю и тут же пишете еще что-то, что весьма похоже на продолжение — но в действительности это только прокладка, никак не соотносящаяся с вашей историей. Эта прокладка — что-то вроде «конца после конца». В ней могут быть странные литературные идеи, совершенно не имеющие отношения к первоначальной теме.

Ахилл: Ловко! Но тогда вам не удастся сказать, где находится действительный конец. Он сольется с прокладкой.

Черепаха: Вот и мы с моим другом-писателем пришли к такому же заключению. Жаль, эта идея мне очень нравилась.

Ахилл: Послушайте, у меня есть предложение. Переход между историей и прокладкой может быть написан таким образом, что внимательный читатель сможет сказать, где кончается одна и начинается другая. Может быть, ему придется над этим посидеть. Может быть, будет вообще невозможно предсказать, сколько времени это у него отнимет. Но издатель сможет дать гарантию, что достаточно тщательный поиск всегда придет к концу, даже если мы и не знаем наперед, как долго он будет продолжаться.

Черепаха: Прекрасно; но что означает «достаточно тщательный»?

Ахилл: Это значит, что читатель должен будет искать в тексте некую крохотную, но важную деталь, которая укажет на действительный конец. И ему придется исхитриться, чтобы среди множества подобных деталей найти настоящую.

Черепаха: Что-то вроде изменения частоты букв или длины слов? Внезапная россыпь грамматических ошибок?

Ахилл: Совершенно верно. Какое-то шифрованное послание, которое поможет внимательному читателю найти конец книги. Еще можно вывести новых персонажей или придумать события, несоответствующие остальной истории. Наивный читатель проглотит это, не задумываясь, в то время как умудренный опытом человек сможет точно указать, где проходит граница.

Черепаха: Какая оригинальная идея, Ахилл. Я расскажу о ней другу и, может быть, он захочет вставить ее в свой Диалог.

Ахилл: Этим он окажет мне честь.

Черепаха: Знаете, боюсь, что я совсем засыпаю, Ахилл. Пойду-ка, пожалуй, пока я еще в силах добраться до дому.

Ахилл: Мне было очень приятно, что вы просидели у меня так долго в такой поздний час только лишь с тем, чтобы составить мне компанию. Уверяю вас, что ваши теоретико-численные рассказы явились прекрасным противоядием против моего обычного верчения в постели. Кто знает, может быть, мне даже удастся сегодня заснуть. В знак благодарности позвольте преподнести вам подарок.

Черепаха: Ах, Ахилл, что за глупости…


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.