Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Ахилл: Как насчет 15?
Черепаха: Превосходно. Вы начинаете с вашего числа; если оно НЕЧЕТНО, вы умножаете его на три и прибавляете 1. Если оно ЧЕТНО, вы берете его половину. После этого мы повторяем процесс. Назовем число, которое таким образом рано или поздно превратится в 1, ИНТЕРЕСНЫМ, и число, которое не станет 1, НЕИНТЕРЕСНЫМ.
Ахилл: Интересное ли число 15? Посмотрим:
15 НЕЧЕТНО, так что я превращаю его в 3n + 1: 46
46 ЧЕТНО, так что я делю его на два: 23
23 НЕЧЕТНО, так что я превращаю его в Зn + 1: 70
70 ЧЕТНО, так что я делю его на два: 35
35 НЕЧЕТНО, так что я превращаю его в Зn + 1: 106
106 ЧЕТНО, так что я делю его на два: 53
53 НЕЧЕТНО, так что я превращаю его в Зn + 1: 160
160 ЧЕТНО, так что я делю его на два: 80
80 ЧЕТНО, так что я делю его на два: 40
40 ЧЕТНО, так что я делю его на два: 20
20 ЧЕТНО, так что я делю его на два: 10
10 ЧЕТНО, так что я делю его на два: 5
5 НЕЧЕТНО, так что я превращаю его в Зn + 1: 16
16 ЧЕТНО, так что я делю его на два: 8
8 ЧЕТНО, так что я делю его на два: 4
4 ЧЕТНО, так что я делю его на два: 2
2 ЧЕТНО, так что я делю его на два: 1.
Ух ты! Ничего себе путешествьице, от 15 до 1! Но я все же достиг цели. Это значит, что 15 обладает свойством «интересности». Хотелось бы узнать, какие числа НЕинтересные…
Черепаха: Вы заметили, что в этом простом процессе числа то возрастают, то уменьшаются?
Ахилл: Я особенно удивился, когда после 13 шагов я получил 16 — число, всего на 1 большее того , с которого я начал! В каком-то смысле, я почти вернулся к началу — но в другом смысле, я был весьма далек от начала. Странно и то, что чтобы решить задачку, мне пришлось добраться до 160. Интересно, почему так получилось?
Черепаха: Потому что потолок у этой задачки бесконечно высок, и заранее невозможно сказать, как высоко нам придется забраться. На самом деле, возможно, что вам придется все время карабкаться вверх, и вверх, и вверх, и никогда не спускаться больше, чем на несколько шагов.
Ахилл: Правда? Наверное, такое возможно — но что за странным совпадением это было бы! Для этого нам должны все время попадаться нечетные числа, за редким исключением. Сомневаюсь, чтобы такое было возможно, хотя, конечно, я не мог бы в этом поклясться.
Черепаха: Проверьте-ка число 27. Имейте в виду, я ничего не обещаю. Но все-таки попробуйте когда-нибудь — просто так, для развлечения. И я посоветовала бы вам запастись для этого большим листом бумаги.
Ахилл: Гммм… Интересно… Знаете, мне все еще кажется странным ассоциировать интересность (или неинтересность) с начальным числом, поскольку совершенно ясно, что это — свойство всей системы чисел.
Черепаха: Я понимаю, что вы имеете в виду, но это ничем не отличается от высказывания «29 — простое число» или «золото — дорогой металл». Оба утверждения приписывают единственному объекту свойство, которым тот обязан контексту целой системы.
Ахилл: Вы, наверное, правы. Проблема «интересности» весьма непроста, так как величина чисел все время колеблется, то возрастая, то уменьшаясь. Здесь ДОЛЖНА быть какая-то регулярность, хотя на вид это выглядит довольно хаотично. Прекрасно понимаю, почему еще никто до сих пор не нашел для «интересности» такой процедуры проверки, которая обязательно кончается.
Черепаха: Кстати о кончающихся и некончающихся процедурах — это мне напоминает об одном из моих друзей; он сейчас работает над своей книгой.
Ахилл: Ах, как занимательно! Как же она называется?
Черепаха: «Медь, серебро, золото — этот неразрушимый сплав». Не правда ли, звучит интересно?
Ахилл: Честно говоря, я что-то не совсем понимаю. Что общего между собой у меди, серебра и золота?
Черепаха: Это ясно, как день.
Ахилл: Вот если бы книга называлась «Гориллы, серебро, золото» или «Эму, золото…» — тогда бы я еще мог понять…
Черепаха: Может быть, вы предпочли бы «Медь, серебро, бабуины»?
Ахилл: Безусловно! Но это действительное название какое-то совсем слабенькое. Никто его не поймет.
Черепаха: Я скажу моему другу. Он (как и его издатель) будет только рад поменять название на более завлекательное.
Ахилл: Приятно слышать. Но почему наш разговор напомнил вам об этой книге?
Черепаха: Ах, да. Видите ли, там будет Диалог, в котором автор постарается запутать читателей, заставив их искать конец.
Ахилл: Забавно. Как же он это сделает?
Черепаха: Вы, безусловно, замечали, как некоторые писатели стараются наращивать напряжение поближе к концу своих историй — но читатель, держа книгу в руках, ЗНАЕТ, что рассказ подходит к концу. Таким образом, у него есть дополнительная информация, которая действует как предупреждение. Напряжение и неизвестность немного подпорчены физической сущностью книги. Было бы гораздо лучше, если бы в конце романов писатели оставляли прокладку потолще.
Ахилл: Прокладку?
Черепаха: Именно; я имею в виду кучу печатных страниц, не имеющих никакого отношения к истории, но маскирующих ее скорое окончание.
Ахилл: А-а, понятно. Таким образом конец истории может отстоять на, скажем, пятьдесят или даже сто страниц от последней страницы книги?
Черепаха: Да. Это привнесло бы некоторый элемент сюрприза, поскольку читатель не будет знать заранее, сколько страниц относятся к прокладке и сколько — собственно к истории.
Ахилл: Такая система была бы эффективной, если бы не есть одна проблема. Представьте себе, что ваша прокладка была бы очевидной — скажем, чистые страницы, куча «А» или случайные буквы. Тогда она была бы совершенно бесполезной.
Черепаха: Согласна. Она должна быть похожа на обычные печатные страницы.
Ахилл: Но даже беглого взгляда на страницу из какой-либо истории зачастую хватает, чтобы отличить ее от страницы из другой истории.
Черепаха: Это верно. Я всегда представляла это так: вы кончаете одну историю и тут же пишете еще что-то, что весьма похоже на продолжение — но в действительности это только прокладка, никак не соотносящаяся с вашей историей. Эта прокладка — что-то вроде «конца после конца». В ней могут быть странные литературные идеи, совершенно не имеющие отношения к первоначальной теме.
Ахилл: Ловко! Но тогда вам не удастся сказать, где находится действительный конец. Он сольется с прокладкой.
Черепаха: Вот и мы с моим другом-писателем пришли к такому же заключению. Жаль, эта идея мне очень нравилась.
Ахилл: Послушайте, у меня есть предложение. Переход между историей и прокладкой может быть написан таким образом, что внимательный читатель сможет сказать, где кончается одна и начинается другая. Может быть, ему придется над этим посидеть. Может быть, будет вообще невозможно предсказать, сколько времени это у него отнимет. Но издатель сможет дать гарантию, что достаточно тщательный поиск всегда придет к концу, даже если мы и не знаем наперед, как долго он будет продолжаться.
Черепаха: Прекрасно; но что означает «достаточно тщательный»?
Ахилл: Это значит, что читатель должен будет искать в тексте некую крохотную, но важную деталь, которая укажет на действительный конец. И ему придется исхитриться, чтобы среди множества подобных деталей найти настоящую.
Черепаха: Что-то вроде изменения частоты букв или длины слов? Внезапная россыпь грамматических ошибок?
Ахилл: Совершенно верно. Какое-то шифрованное послание, которое поможет внимательному читателю найти конец книги. Еще можно вывести новых персонажей или придумать события, несоответствующие остальной истории. Наивный читатель проглотит это, не задумываясь, в то время как умудренный опытом человек сможет точно указать, где проходит граница.
Черепаха: Какая оригинальная идея, Ахилл. Я расскажу о ней другу и, может быть, он захочет вставить ее в свой Диалог.
Ахилл: Этим он окажет мне честь.
Черепаха: Знаете, боюсь, что я совсем засыпаю, Ахилл. Пойду-ка, пожалуй, пока я еще в силах добраться до дому.
Ахилл: Мне было очень приятно, что вы просидели у меня так долго в такой поздний час только лишь с тем, чтобы составить мне компанию. Уверяю вас, что ваши теоретико-численные рассказы явились прекрасным противоядием против моего обычного верчения в постели. Кто знает, может быть, мне даже удастся сегодня заснуть. В знак благодарности позвольте преподнести вам подарок.
Черепаха: Ах, Ахилл, что за глупости…
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"
Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.