» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






С другой стороны, что, если G не теорема? Это можно принять, так как противоречия здесь не возникает. Но G утверждает именно собственную нетеоремность — следовательно, G утверждает истинный факт. Значит, поскольку G не теорема, мы можем заключить, что существует по меньшей мере один истинный факт, не являющийся теоремой ТТЧ.

Теперь — обещанное объяснение сложного шага нашего перевода. Я воспользуюсь для этого похожим примером. Возьмем строчку

~Eа:Eа':<ЧЕРЕПАШЬЯ ПАРА{а, а'}ΛДЕСЯТАЯ СТЕПЕНЬ{SS0/а'',а'}>

где оба сокращения обозначают строчки ТТЧ, которые вы можете дописать сами. ДЕСЯТАЯ СТЕПЕНЬ{а'',а'} представляет высказывание «а' равняется а'' в десятой степени». Таким образом, дословный перевод на русский получается такой:

«Не существует чисел а и а' таких, что они (1) составляют Черепашью пару, и (2) а' — 2 в десятой степени».

Но мы знаем, что десятая степень 2 существует — это 1024. Таким образом, эта строчка на самом деле утверждает, что:

«Не существует числа а, которое составляет Черепашью пару с числом 1024».

Это высказывание, в свою очередь, сводится к:

«1024 не обладает Черепашьим свойством».

Нам удалось заменить символ числа на его описание. Это было возможно, благодаря использованию дополнительной квалифицированной переменной (а' ), В данном случае, число 1024 было описано как «десятая степень двух»— выше это было числом, описанным как «арифмоквайнификация d».

«Будучи арифмоквайнированным, производит нетеоремность!»

Переведем дыхание и посмотрим, что мы сделали до сих пор. Для этого сравним арифмоквайнирование с парадоксом Эпименида. Вот схема этого соответствия:

ложность <==> нетеоремность

цитата фразы <==> Геделев номер строки

предварение предиката цитатой фразы <==> подстановка символа (или определенного терма) в открытую формулу

предварение предиката цитатой фразы <==> подстановка Гёделева номера строчки в открытую формулу

предварение предиката им самим в кавычках (квайнирование) <==> Подстановка Гёделева номера открытой формулы в саму эту формулу (арифмоквайнирование)

После квайнирования производит ложное высказывание (предикат без подлежащего) <==> «дядя» G (открытая формула ТТЧ)

«После квайнирования производит ложное высказывание» (тот же предикат, квайнированныи) <==> номер d (Гёделев номер предыдущей открытой формулы)

«После квайнирования производит ложное высказывание» После квайнирования производит ложное высказывание <==> строчка G (высказывание ТТЧ, полученное путем подстановки d в «дядю», то есть, путем его арифмоквайнирования)

Вторая теорема Гёделя

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G — ложна. Мы знаем, что в ТТЧ невозможно вывести ложные утверждения. Следовательно. ни G, ни ее отрицание ~G не могут быть теоремами ТТЧ. Мы нашли в нашей системе «дыру» — неразрешимое суждение. Из этого следуют несколько фактов. Вот один из них, довольно любопытный: несмотря на то, что ни G, ни ее отрицание ~G не являются теоремами ТТЧ, формула — теорема, поскольку из правил исчисления высказываний следует, что все правильно построенные формулы типа <P V ~P> - теоремы.

Это — простой пример того случая, когда утверждение внутри системы и утверждение о системе противоречат друг другу. Возникает вопрос: действительно ли система верно отражает саму себя? Соответствует ли «отраженная метаматематика», существующая внутри ТТЧ, «обыкновенной», повседневной математики? Это было одним из вопросов, интересовавших Гёделя, когда он писал свою статью. В частности, он был заинтересован в том, возможно ли доказать в «отраженной метаматематике» непротиворечивость ТТЧ. Вспомните, что доказательство непротиворечивости систем было важным философским вопросом того времени. Гёдель нашел простой способ выразить высказывание «ТТЧ непротиворечива» в виде формулы ТТЧ; после чего он показал, что эта формула (как и все другие формулы, выражающие похожую идею) является теоремой ТТЧ только при одном условии: если ТТЧ противоречива. Этот еретический результат был тяжелым ударом для оптимистов, считавшим, что возможно найти строгое доказательство непротиворечивости математики.

Как можно выразить высказывание «ТТЧ непротиворечива» в самой ТТЧ? Опираясь на простой факт: противоречивость означает, что две формулы, x и ~x, одна из которых — отрицание другой, одновременно являются теоремами. Но если они обе — теоремы, тогда, согласно исчислению высказываний, все правильно сформированные формулы — теоремы. Таким образом, чтобы доказать непротиворечивость ТТЧ, достаточно доказать нетеоремность единственного высказывания ТТЧ. Следовательно, один возможный способ выразить непротиворечивость ТТЧ - это высказывание типа «формула ~0=0 не является теоремой ТТЧ». Такое высказывание уже было предложено в качестве упражнения несколькими страницами ранее. Вот что у нас должно получиться:

~Eа:ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,SSSSS…SSSSSO/a'}

.                                                     |_________|

.                                                  «S» 223666111666 раз

Путем длинных, но несложных рассуждений можно доказать, что пока ТТЧ остается непротиворечивой, ее клятва в собственной непротиворечивости — не теорема. Таким образом, ТТЧ весьма сильна в выражении идей, но слабовата в их доказательстве. Это очень интересный результат, если метафорически приложить его к проблеме человеческого самосознания.

ТТЧ страдает ω-неполнотой

От какой именно разновидности неполноты «страдает» ТТЧ? Мы вскоре увидим, что речь идет о неполноте типа «омега», определенной в главе VIII. Это означает, что существует некая бесконечная пирамидальная семья строчек, каждая из которых является теоремой — но при этом соответствующая «итоговая» строчка теоремой не является. Эту итоговую не-теорему найти нетрудно:

~Aа:~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}

ΛARITHMOQUINE{SS… SSSO/a'',a'}>

.                       |_____|

.                     «S» d раз

Чтобы понять, почему эта строчка — не теорема ТТЧ, заметьте, что она крайне напоминает саму G — на самом деле, согласно правилу замены ТТЧ, от нее до G — лишь один шаг. Следовательно, если бы она была теоремой, то нам бы пришлось признать теоремность G. Теперь постараемся показать, что все строчки в пирамидальной семье на самом деле являются теоремами. Мы можем легко их записать:

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{O/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

~Eа':<ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{SSSO/а,а}ΛARITHMOQUINE{SSS…SSSO/а",а}>

*   *

*   *

*   *

Что утверждает каждая из этих строчек? Вот их соответствующие переводы.

«0 и арифмоквайнификация d — не пара доказательства ТТЧ».

«1 и арифмоквайнификация d — не пара доказательства ТТЧ».

«2 и арифмоквайнификация d — не пара доказательства ТТЧ».

«3 и арифмоквайнификация d — не пара доказательства ТТЧ».

«4 и арифмоквайнификация d — не пара доказательства ТТЧ».

*   *

*   *

*   *

Каждое из этих утверждений говорит о том, формируют ли два определенных числа пару доказательства, или нет. (С другой стороны, G говорит о том, является ли одно определенное число. числом-теоремой, или нет.) Поскольку G — не теорема, не существует такого числа, которое составляло бы пару доказательства с Гёделевым номером G. Таким образом, каждое из утверждений пирамидальной семьи истинно. Основная идея в том, что свойство являться парой доказательств примитивно рекурсивно и, следовательно, представимо — поэтому каждое из утверждений выше должно быть переводимо в теорему ТТЧ, что означает, что все утверждения в нашей бесконечной пирамидальной семье — теоремы. И это показывает, почему ТТЧ ω-неполна.

Два разных способа заткнуть дыру

Поскольку интерпретация G истинна, интерпретация ее отрицания ~G ложна. Из нашего предположения о непротиворечивости ТТЧ следует, что в ней не могут быть выведены ложные утверждения.

Таким образом, ни G, ни ее отрицание ~G не являются теоремами ТТЧ. Мы нашли в нашей системе дыру — неразрешимое суждение. Это не должно нас особенно беспокоить, если мы достаточно свободомыслящи, чтобы признать, что из этого следует. Это означает, что ТТЧ можно дополнить, как можно дополнить абсолютную геометрию. В действительности, ТТЧ, как и абсолютную геометрию, можно расширить в двух направлениях. Она может быть расширена в стандартном направлении, что соответствует расширению абсолютной геометрии в Эвклидовом смысле; или же, она, может быть расширена в нестандартном направлении, что, разумеется, соответствует расширению абсолютной геометрии в неэвклидовом смысле. Стандартным дополнением будет:


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.