» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






Позже в девятнадцатом веке английские логики Джордж Буль и Август де Морган пошли значительно дальше Аристотеля в кодификации строго дедуктивных рассуждений. Буль даже назвал свою книгу «Законы мысли», что, безусловно, было некоторым преувеличением; однако его попытки внесли серьезный вклад в общие усилия. Льюис Кэрролл был очарован механическими методами рассуждений и изобрел множество головоломок, решавшихся с помощью этих методов. Готтлоб Фреге в Йене и Джузеппе Пеано в Турине работали над соединением формальных рассуждений с изучением чисел и множеств. Дэвид Гильберт в Геттингене трудился над более строгой, чем у Эвклида, формализацией геометрии. Все эти усилия были направлены на выяснение вопроса о том, что же такое «доказательство».

Между тем, в классической математике тоже происходили интересные события. В 1880-х годах Георг Кантор развил теорию о различных типах бесконечности, известную под именем теории множеств. Теория Кантора была глубока и красива, но шла вразрез с интуицией; вскоре на свет появилось целое семейство парадоксов, основанных на теории множеств. Ситуация была не из приятных. Только математики начали оправляться от удара, нанесенного по математическому анализу парадоксами, связанными с теорией пределов, как попали из огня в полымя из-за нового, еще худшего набора парадоксов!

Самый известный из них — парадокс Рассела. По всей видимости, большинство множеств не являются элементами самих себя: скажем, множество моржей — это не морж; множество, содержащее только одного члена, Жанну д'Арк, само не является Жанной (множество не человек!), и так далее. В этом смысле, большинство множеств совершенно заурядны. Однако существуют такие «самозаглатывающие» множества, которые содержат самих себя, как, например, множество всех множеств, или множество всех вещей за исключением Жанны Д'Арк, и тому подобные. Ясно, что множества могут быть только одного из этих двух типов — либо заурядные, либо самозаглатывающие — и ни одно множество не может входить сразу в два класса. Однако ничто не мешает нам изобрести множество R всех заурядных множеств. На первый взгляд, R кажется довольно заурядным изобретением, но вам придется пересмотреть свое мнение, если вы спросите себя, является ли множество R самозаглатывающим или заурядным. Вы придете к следующему ответу: R не является ни тем, ни другим, так как любой из этих двух ответов приводит к парадоксу. Попробуйте и убедитесь сами!

Но если R не заурядное и не самозаглатывающее, тогда что же оно такое? По меньшей мере, ненормальное. Однако такой уклончивый ответ никого не удовлетворял. Тогда люди стали пытаться докопаться до основ теории множеств; при этом они задавали себе следующие вопросы: «В чем заключается ошибка нашего интуитивного понимания понятия „множество“? Можно ли создать строгую теорию множеств, которая бы не противоречила нашей интуиции и в то же время исключала бы парадоксы?» Здесь, так же как и в теории чисел и в геометрии, проблема заключалась в том, чтобы примирить интуицию с формальными, аксиоматическими системами логических рассуждений.

Удивительный вариант парадокса Рассела, называющийся парадоксом Греллинга, получается, если вместо множеств использовать прилагательные. Разделите все прилагательные русского языка на две категории: те, которые описывают самих себя, «самоописывающие», («пятисложное», «шелестящий,» «пренеестественнейший» и т. п.), и те, которые таким свойством не обладают («съедобный», «двусложный», «кратчайший»). Рассмотрим теперь прилагательное «несамоописывающий». К какому классу оно относится? Попробуйте ответить!

У всех этих парадоксов есть общий виновник: автореферентность, или «страннопетельность». Таким образом, если наша цель — избавиться от всех парадоксов, то почему бы нам не попытаться избавиться от автореферентности и тех условий, которые ее порождают? Это не так легко, как кажется, так как иногда бывает трудно найти, где именно происходит автореференция. Иногда она бывает распределена по Странной Петле в несколько ступеней, как в следующей расширенной версии парадокса Эпименида, напоминающей Эшеровские «Рисующие руки» —

Следующее высказывание ложно.

Предыдущее высказывание истинно.

Вместе эти высказывания производят такой же эффект, как первоначальный парадокс Эпименида; однако взятые по отдельности они безобидны и даже полезны Ни одно из них не может нести ответственности за Странную Петлю; виновато их объединение, то, как они указывают друг на друга. Точно так же каждый взятый по отдельности кусок «Подъема и спуска» совершенно правилен; невозможно лишь подобное соединение этих кусков в одно целое Видимо, существуют прямой и косвенный типы автореферентности; если мы считаем, что в автореферентности — корень зла, то мы должны найти способ избавиться сразу от обоих типов.

Изгнание Странных Петель

Рассел и Уайтхед считали именно таких труд «Основания математики» («ОМ») был титаническим усилием, направленным на изгнание Странных Петель из логики, теории множеств и теории чисел. В основе их системы лежала следующая идея. Множество «низшего» типа могло иметь своими элементами лишь «предметы», а не множества. На следующей ступени стояли множества, которые могли содержать предметы или множества первого типа. Вообще, любое данное множество могло содержать лишь множества низшего типа или предметы. Каждое множество принадлежало к определенному типу. Ясно, что никакое множество не могло содержать самого себя, так как оно оказалось бы тогда принадлежащим к более высокому типу, чем его собственный. В такой системе существуют лишь обыкновенные множества; более того, наш старый знакомец, множество R, теперь вообще не считается множеством, так как оно не принадлежит ни к одному конечному типу! По всей видимости, эта теория типов, которую мы также могли бы именовать «теорией уничтожения Странных Петель», преуспела в избавлении теории множеств от парадоксов — но только ценой введения искусственной иерархии и запрета на определенный тип множеств, такой, например, как множество всех «заурядных» множеств. Интуитивно это идет вразрез с нашим представлением о множествах.

Теория типов справилась с парадоксом Рассела, но ничего не предприняла в отношении парадоксов Эпименида или Греллинга. Для тех, чей интерес не шел дальше теории множеств, этого было достаточно; однако людям, заинтересованным в уничтожении парадоксов вообще, казалось необходимым создание подобной иерархии в языке, чтобы изгнать оттуда Странные Петли. На первой ступеньке такой иерархии стоял бы предметный язык, на котором возможно говорить лишь об определенной сфере предметов, но нельзя говорить о самом предметном языке, обсуждать его грамматику или какие-либо высказывания, для этого понадобился бы метаязык. (Опыт двух различных лингвистических уровней знаком любому, кто изучал иностранные языки.) В свою очередь, что­бы говорить о метаязыке, потребовался бы метаметаязык, и так далее. Каждое высказывание должно было принадлежать к определенному уровню иерархии. Таким образом, если бы мы не могли найти для данного высказывания места в иерархической структуре, мы должны были бы считать такое высказывание бессмысленным и как можно скорее выбросить его из головы.

Можно попытаться проанализировать таким образом двуступенчатую петлю Эпименида, приведенную выше. Первое высказывание, поскольку оно говорит о втором, должно быть уровнем выше последнего; однако точно такое же рассуждение применимо и ко второму высказыванию. Поскольку это невозможно, оба высказывания «бессмысленны». Точнее, они вообще не могут существовать в системе, основанной на строгой иерархии языков. Это предупреждает возникновение любых версий парадокса Эпименида или Греллинга (К какому уровню принадлежит «самоописывающий»?)

В теории множеств, имеющей дело с абстракциями, далекими от повседневной жизни стратификация теории типов еще приемлема, хотя и выглядит натянутой. Когда же дело доходит до языка, важнейшей и ежедневно употребляемой части нашей жизни, такая стратификация кажется абсурдом. Трудно поверить что, разговаривая, мы скачем вверх и вниз по иерархии языков. Довольно обычное высказывание, такое как, например, «В этой книге я критикую теорию типов», было бы дважды запрещено в подобной системе. Во-первых, оно упоминает «эту книгу», которая должна бы упоминаться только в «метакниге», и во-вторых, оно упоминает обо мне — существе, о котором я не должен бы говорить вообще. Этот пример показывает, насколько нелепо выглядит теория типов в повседневном контексте. В данном случае, лекарство хуже самой болезни метод, используемый этой теорией, чтобы избавиться от парадоксов, заодно объявляет бессмыслицей множество вполне правильных конструкций. Эпитет «бессмысленный» кстати, был бы приложим к любому обсуждению теории лингвистических типов (и в частности, к данному параграфу), так как ясно, что никакое из них не может принадлежать ни к одному из уровней — ни к предметному ни к метаязыку, ни к метаметаязыку, и т. д. Таким образом, сам акт обсуждения теории оказывался бы ее грубейшим нарушением.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.