» » » » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда


Авторские права

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Здесь можно скачать бесплатно "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство Издательский Дом «Бахрах-М», 2001., год 2001. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Рейтинг:
Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
Издательский Дом «Бахрах-М», 2001.
Год:
2001
ISBN:
ISBN 5-94648-001-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Описание и краткое содержание "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать бесплатно онлайн.



Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.






На сегодняшний день люди подходят к шахматной проблеме по-разному. Одна из новейших точек зрения включает гипотезу о том, что просчет вариантов — глупое занятие. Вместо этого предлагается оценить позицию, стоящую на доске в данный момент, и, пользуясь эвристикой, составить некий план — а затем найти ход, способствующий выполнению этого плана. Безусловно, правила для составления планов неизбежно будут включать эвристику, которая является чем-то вроде упрощенного просчета вариантов. Иными словами, опыт анализа вариантов многих сыгранных ранее партий здесь «сжат» в новую форму, при поверхностном рассмотрении не требующую подобного анализа. Кажется, что это не более, чем игра слов. Однако если такое «сокращенное» знание дает нам более эффективные ответы, чем действительный просчет вариантов (даже если при этом иногда случаются ошибки), то мы уже кое-что выигрываем. Именно этим превращением знаний в более эффективно используемые формы и отличается разум — так что меньше-анализирующие-варианты-шахматы, возможно, являются плодотворной идеей. Особенно интересно было бы создать программу, способную превращать знания, полученные путем анализа возможных вариантов, в «сокращенные» правила; но это — огромный труд.

Шашечная программа Самуэля

Именно такой метод был разработан Артуром Самуэлем в его замечательной шашечной программе. Метод Самуэля состоял в одновременном использовании динамического (с заглядыванием вперед) и статического (без заглядывания вперед) способов оценки любой данной позиции. Статический метод основывался на простой математической функции нескольких величин, характеризующих любую позицию на доске; это вычислялось практически мгновенно. В свою очередь, динамический метод основывался на создании «дерева» возможных будущих ходов, ответов на них, ответов на ответы и так далее (как было показано на рис. 38). Некоторые параметры в функции статической оценки могли варьироваться, в результате чего получались разные версии этой функции. Стратегия Самуэля заключалась в том, чтобы путем естественного отбора находить все лучшие и лучшие значения этих параметров.

Это делалось следующим образом: каждый раз, когда программа оценивала позицию, она делала это одновременно статистически и динамически. Ответ, полученный путем анализа вариантов, — назовем его Д — использовался для нахождения следующего хода. Цель С — статистической оценки — была сложнее: после каждого хода переменные параметры немного исправлялись таким образом, чтобы С возможно больше приближалось к Д. В результате знание, полученное путем динамического анализа дерева, частично включалось в параметры статистической оценки. Короче, идея заключалась в том, чтобы постепенно превратить сложный динамический метод в гораздо более простую и эффективную функцию статической оценки.

Здесь возникает изящный рекурсивный эффект. Дело в том, что динамическая оценка любой данной позиции включает просчет вперед на конечное число ходов — скажем, семь. При этом промежуточные позиции, получающиеся после каждого возможного хода, также должны получить какую-то оценку. Но когда программа оценивает эти позиции, она, разумеется, уже не может просчитывать на семь ходов вперед — иначе ей пришлось бы анализировать четырнадцать возможных позиций, затем двадцать одну и так далее, и тому подобное — что породило бы бесконечный регресс. Вместо этого программа пользуется статическими оценками позиций, возникающих при анализе. Таким образом, схема Самуэля включает сложную обратную связь, в процессе которой программа непрерывно пытается превратить оценки, основанные на просчете вариантов, в более простой статический подход; этот подход в свою очередь играет ключевую роль в динамическом взгляде вперед. Таким образом, оба этих метода тесно связаны между собой, и каждый рекурсивным путем извлекает пользу из улучшений в другом методе.

Уровень игры шашечной программы Самуэля крайне высок и сравним с уровнем лучших человеческих игроков мира. Если это так, то почему бы не приложить ту же идею к шахматам? Международный комитет, собравшийся в 1961 году, чтобы обсудить возможность компьютерных шахмат, и включавший датского международного гроссмейстера и математика Макса Эйве, пришел к печальному заключению, что использование метода Самуэля в шахматах было бы примерно в миллион раз труднее, чем в шашках. По-видимому, это закрывает данный вопрос…

Удивительно высокого уровня игры шашечных программ недостаточно для того, чтобы утверждать, что искусственный интеллект уже создан; однако этого успеха также не следует преуменьшать. Это комбинация идей о том, что такое шашки и как их анализировать и программировать. Некоторые читатели могут подумать, что эта программа ничего, кроме шашечного мастерства самого Самуэля, не доказывает. Но это неверно по крайней мере по двум причинам. Во-первых, хорошие игроки выбирают ходы, руководствуясь мысленными процессами, которых они сами полностью не понимают — они пользуются интуицией. Однако до сих пор никому не известен способ стопроцентного использования собственной интуиции; лучшее, что мы можем сделать, это задним числом использовать наши «впечатления» или «мета-интуицию» (интуицию о собственной интуиции), чтобы с их помощью попытаться объяснить природу собственной интуиции. Но это было бы только грубым приближением к действительной сложности интуитивных методов. Поэтому практически невозможно, чтобы Самуэль скопировал в своей программе собственные методы игры. Есть и другая причина, по которой не следует путать игру Самуэлевой программы с игрой ее создателя — программа его регулярно обыгрывает! Это вовсе не парадокс — не более, чем тот факт, что компьютер, запрограммированный на вычисление π, может делать это гораздо быстрее самого программиста.

Какую программу можно назвать оригинальной?

Проблема компьютера, превосходящего своего программиста, связана с вопросом «оригинальности» в ИИ. Что, если программа ИИ выдвинет идею или план игры, которые никогда не приходили в голову ее создателю? Кому тогда будет принадлежать честь? Существуют несколько интересных примеров, когда именно это и происходило; некоторые примеры касаются весьма тривиального уровня, некоторые — уровня довольно глубокого. Один из самых известных случаев произошел с программой Е. Гелернтера, созданной для доказательства теорем элементарной Эвклидовой геометрии. В один прекрасный день эта программа нашла блестящее и оригинальное доказательство одной из основных теорем геометрии, так называемой «pons asinorum» или «ослиный мост».

Эта теорема утверждает, что углы, прилегающие к основанию равнобедренного треугольника, равны между собой. Стандартное доказательство проводится с помощью высоты, делящей треугольник на две симметричные половины. Элегантный метод, найденный программой (см. рис. 114), не пользуется никакими дополнительными построениями.


Рис. 114. Доказательство Pons Asinorum (найденное Паппусом (ок. 300 г. до н. э.) и программой Гелернтера (ок. 1960 г. н. э.).) Требуется доказать, что углы, прилегающие к основанию равнобедренного треугольника, равны между собой. Решение: поскольку треугольник равнобедренный, АР и АР' — равной длины. Следовательно, треугольники РАР' и Р'АР конгруэнтны (сторона-сторона-сторона). Из этого вытекает, что соответствующие углы равны. В частности, углы, прилегающие к основанию, равны.

Вместо этого программа рассмотрела данный треугольник и его зеркальное отображение как два различных треугольника Доказав, что они конгруэнтны, она показала, что углы у основания соответствуют друг другу в этой конгруэнтности — что и требовалось доказать.

Это блестящее доказательство восхитило как создателя программы, так и многих других, некоторые даже увидели в этом признак гениальности. Не умаляя этого достижения, заметим, что в 300 году до н. э. геометр Паппус нашел также и это доказательство. Так или иначе, открытым остается вопрос: «Чья это заслуга?» Можно ли назвать это разумным поведением? Или же доказательство находилось глубоко внутри человека (Гелернтера), и компьютер только извлек его на поверхность? Последний вопрос подходит очень близко к цели. Его можно вывернуть наизнанку. Было ли доказательство спрятано глубоко в программе, или же оно лежало на поверхности? Насколько легко понять, почему программа сделала именно то, что она сделала? Может ли ее открытие быть приписано какому-то простому механизму, или простой комбинации механизмов программы? Или же имело место некое сложное взаимодействие, которое, будучи объяснено, не станет от этого менее достойным восхищения?

Кажется логичным предположить, что, если эти действия — результат неких операций, с легкостью прослеживаемых в программе, то, в каком-то смысле, программа лишь выявляла идеи, спрятанные (правда, неглубоко) в голове самого программиста. Напротив, если прослеживание программы шаг за шагом не помогает нам ответить на вопрос, откуда взялось это определенное открытие то, возможно, пора начать отделять «разум» программы от разума программиста. Программисту принадлежит лишь честь изобретения программы, но не идей которые выдала затем эта программа. В таких случаях, человека можно назвать «мета-автором» — автором автора результата, а программу — просто автором.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Книги похожие на "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Даглас Хофштадтер

Даглас Хофштадтер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда"

Отзывы читателей о книге "ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.